Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}=6\)
Mà \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{36}{x+2y+3z}\Rightarrow6\ge\frac{36}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)
MÀ \(y^2+1\ge2y;z^3+1+1\ge3z\)
=> A+3\(\ge\left(x+2y+3z\right)=6\) => A>=3
dấu = xảy ra <=> x=y=z
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)
Dấu "=" xảy ra khi:
\(x=y=z=\frac{2}{3}\)
Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\) ( 1 )
Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ( 2 )
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\) ( 3 )
Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)
\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)
\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)
\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
Mà theo BĐT AM - GM ta có tiếp:
\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)
\(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra tại x=y=z=1
Vậy..................
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?
Do \(x;y;z>0\) và \(x^2+y^2+z^2=3\)
Nên \(0< x;y;z< \sqrt{3}\)
Ta có: \(\frac{1}{x+y+z}\le\frac{1}{9x}+\frac{1}{9y}+\frac{1}{9z}\)
\(\Rightarrow A\ge x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-\frac{1}{9x}-\frac{1}{9y}-\frac{1}{9z}\)
\(\Leftrightarrow A\ge x+\frac{8}{9x}+y+\frac{8}{9y}+z+\frac{8}{9z}\)
Ta chứng minh: \(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\)
\(\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge\)
Do đó \(A\ge\frac{x^2+y^2+z^2+99}{18}=\frac{102}{18}=\frac{17}{3}\)
Dấu = xảy ra khi x=y=z=1
Dòng thứ 3 từ dưới lên là \(\left(x-1\right)^2\left(16-x\right)\ge0\)
Đúng do \(0< x< \sqrt{3}< 16\)
Mik ms làm lần đâu sai thì thôi nha :
Để P nhỏ nhất thì
\(y^2+z^2+z^2+x^2+y^2+x^2\)
\(=\left(y^2+x^2+z^2\right)+z^2+x^2+y^2\)
\(=1+x^2+y^2+z^2\ge1\)
b làm rõ hơn đc ko