Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x^3-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\left(1\right)\)
Xét : \(\left(x-y\right)^2=x^2+y^2-2xy\)
Thay \(\hept{\begin{cases}x-y=-7\\xy=-6\end{cases}\left(3\right)}\)vào , ta được :
\(x^2+y^2=49-12=37\left(2\right)\)
Thay \(\left(2\right)\),\(\left(3\right)\)vào \(\left(1\right)\)vào , ta có giá trị của biểu thức tương đương với :
\(-7\left(37-6\right)-\left(-7^2\right)=-7.31-49=-266\)
\(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)2xy}\)
=\(\frac{x^2+5x+y^2+5y+2xy-3}{x^2+6x+y^2+6y+2xy}\)
triệt tiêu x2;y2;2xy ta được:
\(\frac{5x+5y-3}{6x+6y}=\frac{5\left(x+y\right)-3}{6\left(x+y\right)}\)
=\(\frac{5.2010-3}{6.2010}=\frac{3349}{4020}\)
\(A=x^2+y^2-xy^2-x^2y+2xy-5\)
\(=\left(x+y\right)^2-xy\left(y+x\right)-5\)
\(=2^2-2xy-5=-\left(2xy+1\right)\)
Trả lời:
\(A=x^2+y^2-x^2y-xy^2+2xy-5\)
\(A=\left(x^2+2xy+y^2\right)-xy.\left(x+y\right)-5\)
\(A=\left(x+y\right)^2-xy.\left(x+y\right)-5\)
\(A=2^2-xy.2-5\)
\(A=4-2xy-5\)
\(A=-1-2xy\)
\(A=-\left(1+2xy\right)\)
Học tốt
\(\frac{xy}{x^2+y^2}=\frac{3}{8}\Rightarrow xy=\frac{3}{8}\left(x^2+y^2\right)\)
=>\(A=\frac{x^2+y^2+\frac{3}{4}\left(x^2+y^2\right)}{x^2+y^2-\frac{3}{4}\left(x^2+y^2\right)}=\frac{\frac{7}{4}\left(x^2+y^2\right)}{\frac{1}{4}\left(x^2+y^2\right)}=7\)
\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(=x^3-3x^2y+3xy^2-y^3-x^2+2xy-y^2\)
\(=\left(x-y\right)^3-\left(x-y\right)^2\)
\(=x-y\)
\(=7\)
Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)
Vậy P=26
1) \(\frac{xy}{x^2+y^2}=\frac{3}{8}\Leftrightarrow3x^2+3y^2-8xy=0\)
Nhận thấy điều kiện của phương trình là x,y cùng khác 0
Chia cả hai vê của phương trình trên cho \(y^2\ne0\)được :
\(3\left(\frac{x}{y}\right)^2-8\left(\frac{x}{y}\right)+3=0\). Đặt \(a=\frac{x}{y}\), phương trình trở thành : \(3a^2-8a+3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{7}}{3}\\x=\frac{4-\sqrt{7}}{3}\end{cases}}\)
Từ đó rút ra được tỉ lệ của \(\frac{x}{y}\). Bạn thay vào tính A là được :)
2) \(\frac{x^9-1}{x^9+1}=7\Leftrightarrow\frac{x^9-1}{x^9+1}-1=6\Leftrightarrow\frac{-2}{x^9+1}=6\Leftrightarrow x^9=\frac{-2}{6}-1=-\frac{4}{3}\)
Ta có \(A=\frac{\left(x^9\right)^2-1}{\left(x^9\right)^2+1}\). Thay giá trị của x9 vừa tính ở trên vào là được :)
\(\frac{xy}{x^2+y^2}=\frac{3}{8}\Rightarrow xy=\frac{3}{8}\left(x^2+y^2\right)\)
\(\Rightarrow A=\frac{x^2+y^2+\frac{3}{4}\left(x^2+y^2\right)}{x^2+y^2-\frac{3}{4}\left(x^2+y^2\right)}=\frac{\frac{7}{4}\left(x^2+y^2\right)}{\frac{1}{4}\left(x^2+y^2\right)}=7\)
\(x^3-y^3-x^2+2xy-y^2\)
\(=\left(x^3-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+y^2-xy\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+2xy-xy\right]-\left(x-y\right)^2\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+xy\right]-\left(x-y\right)^2\)
\(=\left(-5\right)\left[\left(-5\right)^2-6\right]-\left(-5\right)^2\)
\(=\left(-5\right)\left(25-6\right)-25\)
\(=\left(-5\right).21-25\)
\(=-105-25=-130\)
\(x^3-y^3-x^2+2xy-y^2=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)
\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-x+y\right)\)
Đến đây thì ko bk lm nx