Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)
\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)
\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)
\(=\frac{2005\times2010-6}{2005\times2011}\)
\(=\frac{2004}{2005}\)
a) A \(=\)\(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)\(=\)\(\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\)\(\frac{2\left(x-2\right)}{x+2}\)\(=\)\(\frac{2x-4}{x+2}\)
Tại x = \(\frac{1}{2}\)thì:
A = \(\frac{2.\frac{1}{2}-4}{\frac{1}{2}+2}\)\(=\)\(\frac{-3}{\frac{5}{2}}\)\(=\)\(\frac{-6}{5}\)
a) A = 5(x + 3)(x - 3) + (2x + 3)2 + (x - 6)2 = 5(x2 - 9) + (4x2 + 12x + 9) + (x2 - 12x + 36) = 10x2
Tại x = -2,A = 10.(-2)2 = 40
b) x2 + y2 = x2 + 2xy + y2 - 2xy = (x + y)2 - 2.(-25) = 102 + 50 = 150
a, \(A=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\)
\(=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(3x-2\right)\left(3x+2\right)\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2=36.\left(-\frac{1}{3}\right)^2=4\)
b, \(B=\left(x+y-7\right)^2-2\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left[\left(x+y-7\right)-\left(y-6\right)\right]^2\)
\(=\left(x-1\right)^2\)
\(=\left(101-1\right)^2=10000\)
c, \(C=4x^2-20x+27\)
\(=\left(2x\right)^2-2.2x.5+5^2+2\)
\(=\left(2x-5\right)^2+2\)
\(=\left(52,5.2-5\right)^2+2\)
\(=100^2+2=10002\)
Bài này dễ mà chỉ dùng hằng đẳng thức thôi. Chúc bạn học tốt.
a. \(=4x^2-4xy+y^2+4x^2-4xy+y^2=8x^2+2y^2\)
\(=8.\left(\frac{1}{21}\right)^2+4.\left(-0.3\right)^2=\frac{4169}{11025}\)
b, \(=\left(\frac{1}{7}xy+7yz+\frac{1}{7}xy-7yz\right)\left(\frac{1}{7}xy+7yz-\frac{1}{7}xy+7yz\right)\)
\(=\frac{2}{7}xy.14yz=4xy^2z=4.2.\left(0,25\right)^2.\left(-4\right)=-2\)
a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)
b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)
\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)
c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)
d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)
e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)
= 31
f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)
\(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)2xy}\)
=\(\frac{x^2+5x+y^2+5y+2xy-3}{x^2+6x+y^2+6y+2xy}\)
triệt tiêu x2;y2;2xy ta được:
\(\frac{5x+5y-3}{6x+6y}=\frac{5\left(x+y\right)-3}{6\left(x+y\right)}\)
=\(\frac{5.2010-3}{6.2010}=\frac{3349}{4020}\)