Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chia tứ giác ABCD thành tam giác ACD và tam giác ABC
\( \Rightarrow \) Số đo tổng các góc tam giác ACD = tổng số đo các góc tam giác ABC = \({180^o}\)
\( \Rightarrow \)Tổng số đo các góc trong tứ giác ABCD = tổng số đo các góc 2 tam giác ACD và ABC \( = {2.180^o} = {360^o}\)
Ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}=360^o-\left(\widehat{C}+\widehat{D}\right)\)
\(\Rightarrow\widehat{A}+\widehat{B}=360^o-\left(60+80\right)=220^o\)
mà \(\widehat{A}-\widehat{B}=10^o\)
\(\Rightarrow\widehat{A}=\left(220-10\right):2=105^o\)
\(\Rightarrow\widehat{B}=105-10=95^o\)
Vậy \(\left\{{}\begin{matrix}\widehat{A}=105^o\\\widehat{B}=95^o\end{matrix}\right.\)
\(\widehat{BAC}\)= 1800 - (\(\widehat{B}+\widehat{C}\)) = 1800 - ( 800 + 300)= 700
\(\widehat{A}_1\)=\(\widehat{A}_2\)=\(\dfrac{\widehat{A}}{2}\)=\(\dfrac{70^0}{2}\)= 350
\(\widehat{ADC}=\widehat{B}+\widehat{A}_1\)(Góc ngoài của tam giác)
=800 + 350)= 1150
Do đó \(\widehat{ADB}\)= 1800 - \(\widehat{ADC}\)= 1800 + 1150=650
Hình vẽ:
Gọi A1, A2 là 2 góc được tạo ra bởi tia phân giác góc A.
Ta có:
Góc ∠BAC = 1800 – ( ∠B + ∠C)
= 1800 – ( 800 + 300) = 700
Hay ta có thể gọi ∠A = 700
Góc ∠A1 = ∠A2
= ∠A/2 = 700 /2 = 350
- Xét tam giác ADC ta có: Góc ∠ADC = 1800 – (∠C + ∠A2)
= 1800 – (350 + 300)= 1150
- Do đó góc ∠ADB = 1800 – ∠ADC
= 1800 – 1150
= 650
Theo đề bài, ta có: \(\widehat{B}+\widehat{C}+\widehat{B}+\widehat{D}=200^0+180^0\)
\(\Leftrightarrow2\widehat{B}+\left(\widehat{C}+\widehat{D}\right)=380^0\)
\(\Leftrightarrow2\widehat{B}=380^0-120^0=260^0\)
\(\Rightarrow\widehat{B}=130^0\Rightarrow\widehat{C}=70^0,\widehat{D}=50^0\)
Mỗi tứ giác đều được tạo thành từ \(2\) tam giác phân biệt nên tổng các góc trong một tứ giác là \(360^0\).
Do đó, \(\widehat{A}=360^0-130^0-70^0-50^0=110^0\)
Vậy: ...
( Có hết trên kia rồi, bạn tự bổ sung từ vậy )