K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Xét ∆ABC vuông tại B có:

^BAC + ^C = 90°

Hay ^BAC + 30° = 90°

=> ^BAC = 60° 

Vì AD là phân giác của góc BAC.

=> ^DAC = 60°/2 = 30°

Xét tam giác ADC có:

^DAC + ^ACD + ^ADC = 180°

Hay 30° + 30° + ^ADC = 180°

=> ^ADC = 180° - 30° - 30°

=> ^ADC = 120°

b) Xét tam giác ABD và tam giác AED có:

AB = AE ( gt )

^BAD = ^EAD ( Do AD phân giác )

Cạnh AD chung.

=> ∆ABD = ∆AED ( c.g.c )

c) Vì ∆ABD = ∆AED ( cmt )

=> ^ABD = ^AED = 90°

=> DE vuông góc với AC tại E                (1)

Ta có: ^DAC = ^DCA = 30°

=> ∆DAC cân tại D.

=> AD = DC

Xét tam giác DEA và tam giác DEC có:

Góc vuông: ^DEA = ^DEC ( = 90° )

Cạnh huyền AD = DC ( cmt )

Góc nhọn: ^DAC = ^DCA ( cmt )

=> ∆DEA = ∆DEC ( g.c.g )

=> AE = EC 

=> E là trung điểm của AC.                       (2)

Từ (1) và (2) => DE là trung trực của AC ( đpcm )

7 tháng 7 2017

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

a) \(\Delta ABD=\Delta EBD\left(c.g.c\right)\Rightarrow DA=DE\)

b) Vì \(\Delta ABD=\Delta EBD\) nên \(\widehat{A}=\widehat{BED}\). Do \(\widehat{A}=90^0\) nên \(\widehat{BED}=90^0\)

28 tháng 8 2017

Tam giác ADE có: \(\widehat{\text{D}}=\widehat{E}\)(gt)

\(\widehat{\text{D1}}=\widehat{D2}=\dfrac{1}{2}\widehat{D}\)(Vì DM là tia phân giác)

\(\widehat{\text{E1}}=\widehat{E2}=\dfrac{1}{2}\widehat{E}\)(Vì EN là tia phân giác)

Suy ra:\(\widehat{\text{D1}}=\widehat{D2}=\)\(\widehat{\text{E1}}=\widehat{E2}\)

Xét ∆DNE = ∆EMD, ta có:

\(\widehat{NDE}\widehat{=MED}\)((gt)

DE cạnh chung

\(\widehat{\text{D1}}=\widehat{E2}=\)(chứng minh trên)

Suy ra: ∆DNE = ∆EMD (g.c.g)

Vậy DE = EM (2 cạnh tương ứng).

Kẻ OF//BC(F thuộc AC)

=>OF//DE//BC

DE//BC

=>góc DEA=góc ACB

=>góc DEO=1/2*góc ACB

ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF

=>góc EOF=1/2*góc ACB

=>góc DEO=góc EOF

OF//BC

=>góc FOB=góc OBC=1/2góc ABC

góc BOE=góc BOF+góc EOF

=1/2(góc ABC+góc ACB)