Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab−c−ba−c−cb−a=0=>ab−c−ba−c−cb−a=0
=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)
Nhân cả 2 vế với 1b−c1b−c ta được
a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)
Tương tự ta có:
b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)
c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)
Cộng theo vế (1);(2);(3) ta có ĐPCM
Lời giải:
Ta có:
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\Rightarrow \frac{a}{b-c}=\frac{-b}{c-a}+\frac{-c}{a-b}\)
\(\Leftrightarrow \frac{a}{b-c}=\frac{-b(a-b)-c(c-a)}{(a-b)(c-a)}=\frac{b^2+ca-c^2-ab}{(a-b)(c-a)}\)
\(\Rightarrow \frac{a}{(b-c)^2}=\frac{b^2+ca-c^2-ab}{(a-b)(b-c)(c-a)}\)
Hoàn toàn tương tự:
\(\frac{b}{(c-a)^2}=\frac{c^2+ab-a^2-bc}{(a-b)(b-c)(c-a)}\)
\(\frac{c}{(a-b)^2}=\frac{a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}\)
Cộng theo vế các đẳng thức vừa thu được ta có:
\(\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=\frac{b^2+ac-c^2-ab+c^2+ab-a^2-bc+a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}=0\)
Ta có đpcm.
Lời giải:
Ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\Rightarrow \left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)(a+b+c)=a+b+c\)
\(\Leftrightarrow \frac{a^2}{b+c}+\frac{a(b+c)}{b+c}+\frac{b(c+a)}{c+a}+\frac{b^2}{c+a}+\frac{c(a+b)}{a+b}+\frac{c^2}{a+b}=a+b+c\)
\(\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)
\(\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
Ta có đpcm.
Lời giải:
Xét hiệu:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
\(=\frac{a-c}{b}+\frac{b-a}{c}+\frac{c-b}{a}=-\frac{(b-a)+(c-b)}{b}+\frac{b-a}{c}+\frac{c-b}{a}\)
\(=\frac{b-a}{c}-\frac{b-a}{b}+\frac{c-b}{a}-\frac{c-b}{b}\)
\(=(b-a)(\frac{1}{c}-\frac{1}{b})+(c-b)(\frac{1}{a}-\frac{1}{b})\)
\(=\frac{(b-a)(b-c)}{bc}+\frac{(c-b)(b-a)}{ab}=(b-a)(b-c)(\frac{1}{bc}-\frac{1}{ab})\)
\(=\frac{(b-a)(b-c)(a-c)}{abc}\geq 0\) do \(0\leq a\leq b\leq c\)
Do đó:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{b}{a}+\frac{c}{b}+\frac{a}{c}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Lời giải:
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow \frac{ab+bc+ac}{abc}=0\Leftrightarrow ab+bc+ac=0\)
\(\Leftrightarrow 2(ab+bc+ac)=0\)
Cộng cả hai vế với \(a^2+b^2+c^2\) thì:
\(a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2\)
\(\Leftrightarrow (a+b+c)^2=a^2+b^2+c^2\)
Do đó ta có đpcm.
Tham khảo ở đây có đủ các cách cho bạn chọn lựa
Từ "Siêu tốc thần sầu" đến "tập thể dục" tha hồ luyện
!!!
https://hoc24.vn/hoi-dap/question/196314.html
For \(a\geq b\geq c>0\) we obtain:
\(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)
\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)
\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\)
Ta có: \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)
\(\Leftrightarrow-4bc=0\)
hay c=0