Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:a,b,c ba cạnh tam giác => a,b,c dương
\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)
\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)
\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)
p/s: đề sao làm vậy:
mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn
Bài 1:
Áp dụng BĐt cauchy dạng phân thức:
\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)
\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)
dấu = xảy ra khi 2x+y=x+2y <=> x=y
Bài 2:
ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)
\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)
Áp dụng BĐT trên vào bài toán ta có:
\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
......
dấu = xảy ra khi a=b=c
Bài 2:
Áp dụng BĐT cauchy cho 2 số dương:
\(a^2+1\ge2a\)
\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)
thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)
cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm
dấu = xảy ra khi a=b=c=1
Lời giải:
Ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\Rightarrow \left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)(a+b+c)=a+b+c\)
\(\Leftrightarrow \frac{a^2}{b+c}+\frac{a(b+c)}{b+c}+\frac{b(c+a)}{c+a}+\frac{b^2}{c+a}+\frac{c(a+b)}{a+b}+\frac{c^2}{a+b}=a+b+c\)
\(\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)
\(\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
Ta có đpcm.
ab−c−ba−c−cb−a=0=>ab−c−ba−c−cb−a=0
=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)
Nhân cả 2 vế với 1b−c1b−c ta được
a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)
Tương tự ta có:
b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)
c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)
Cộng theo vế (1);(2);(3) ta có ĐPCM
Lời giải:
Ta có:
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\Rightarrow \frac{a}{b-c}=\frac{-b}{c-a}+\frac{-c}{a-b}\)
\(\Leftrightarrow \frac{a}{b-c}=\frac{-b(a-b)-c(c-a)}{(a-b)(c-a)}=\frac{b^2+ca-c^2-ab}{(a-b)(c-a)}\)
\(\Rightarrow \frac{a}{(b-c)^2}=\frac{b^2+ca-c^2-ab}{(a-b)(b-c)(c-a)}\)
Hoàn toàn tương tự:
\(\frac{b}{(c-a)^2}=\frac{c^2+ab-a^2-bc}{(a-b)(b-c)(c-a)}\)
\(\frac{c}{(a-b)^2}=\frac{a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}\)
Cộng theo vế các đẳng thức vừa thu được ta có:
\(\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=\frac{b^2+ac-c^2-ab+c^2+ab-a^2-bc+a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}=0\)
Ta có đpcm.
2a)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)
Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )
Vì \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Mà \(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)
\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
2b)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Bài 1)
Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Giải
Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0
Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)và\(\dfrac{1}{x+2y}\)
\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)
\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)
Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y
Áp dụng BĐT Cauchy ta có
\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge a\)
\(\dfrac{b^2}{a+c}+\dfrac{a+c}{4}\ge b\)
\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
Dấu bằng xảy ra khi a=b=c
Làm tắt vài chỗ thông cảm
Câu b,
Ta có BĐT Cauchy \(a^2+b^2\ge2ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(\Rightarrow\dfrac{ab}{a+b}\le\dfrac{\left(a+b\right)^2}{4\left(a+b\right)}=\dfrac{a+b}{4}\)
Tương tự \(\dfrac{bc}{b+c}\le\dfrac{b+c}{4}\)
\(\dfrac{ac}{a+c}\le\dfrac{a+c}{4}\)
Cộng theo vế ta đc \(VT\le\dfrac{2\left(a+b+c\right)}{4}=\dfrac{a+b+c}{2}\)
Dấu bằng xảy ra khi a=b=c
Từ \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)
\(=>\dfrac{a}{b-c}+1+\dfrac{b}{c-a}+1+\dfrac{c}{a-b}+1=3\)
\(=>\dfrac{a}{b-c}-\dfrac{b}{a-c}-\dfrac{c}{b-a}=0\)
\(=>\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)
Nhân cả 2 vế với \(\dfrac{1}{b-c}\) ta được
\(\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)
Tương tự ta có:
\(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right)\)
\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+cb-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)
Cộng theo vế (1);(2);(3) ta có ĐPCM
CHÚC BẠN HỌC TỐT.........
Đặt \(M=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
Xét \(M\times\dfrac{c}{a-b}=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}\left(\dfrac{b^2-bc+ac-a^2}{ab}\right)=1+\dfrac{c}{a-b}\left(\dfrac{\left(b-a\right)\left(b+a\right)-c\left(b-a\right)}{ab}\right)=1+\dfrac{c}{a-b}\left(\dfrac{\left(b-a\right)\left(a+b-c\right)}{ab}\right)\)
Vì \(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a+b-c=-2c\)
\(\Rightarrow M\times\dfrac{c}{a-b}=1+\dfrac{c}{a-b}\times\dfrac{\left(a-b\right)2c}{ab}=1+\dfrac{2c^2}{ac}=1+\dfrac{2c^3}{abc}\)
Tương tự \(M\times\dfrac{a}{b-c}=1+\dfrac{2a^3}{abc}\)
\(M\times\dfrac{b}{c-a}=1+\dfrac{2b^3}{abc}\)
\(\Rightarrow A=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}\)
Mà do \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)
\(\Rightarrow A=9\)
Cách làm mới cũng khá chính xác, nhớ tick mình nha .
Vì a+b+c=0 nên (a+b)(b+c)(c+a)=-abc
Áp dụng bất hằng đẳng thức\(a^2\left(c-b\right)+b^2\left(a-c\right)+c^2\left(b-c\right)=\left(a-b\right)\left(b-c\right)\left(c-a\right)
\)
\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\)
Ta có A=\(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
\(A=\left(\dfrac{\left(a-b\right)ab+\left(b-c\right)bc+\left(c-a\right)ac}{abc}\right)\left(\dfrac{\left(b-c\right)\left(c-a\right)c+\left(a-b\right)\left(c-a\right)a+\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)
\(A=(\dfrac{-[a^2\left(c-b\right)+b^2\left(a-b\right)+c^2\left(b-c\right)]}{abc})\left(\dfrac{a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)-5abc-a^3-b^3-c^3}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)
A=\(=\left(\dfrac{-1}{abc}\right)\left(-9abc\right)=9\)
Lời giải:
Xét hiệu:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
\(=\frac{a-c}{b}+\frac{b-a}{c}+\frac{c-b}{a}=-\frac{(b-a)+(c-b)}{b}+\frac{b-a}{c}+\frac{c-b}{a}\)
\(=\frac{b-a}{c}-\frac{b-a}{b}+\frac{c-b}{a}-\frac{c-b}{b}\)
\(=(b-a)(\frac{1}{c}-\frac{1}{b})+(c-b)(\frac{1}{a}-\frac{1}{b})\)
\(=\frac{(b-a)(b-c)}{bc}+\frac{(c-b)(b-a)}{ab}=(b-a)(b-c)(\frac{1}{bc}-\frac{1}{ab})\)
\(=\frac{(b-a)(b-c)(a-c)}{abc}\geq 0\) do \(0\leq a\leq b\leq c\)
Do đó:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{b}{a}+\frac{c}{b}+\frac{a}{c}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
camon