K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 4 2018

Lời giải:

Ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow \left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)(a+b+c)=a+b+c\)

\(\Leftrightarrow \frac{a^2}{b+c}+\frac{a(b+c)}{b+c}+\frac{b(c+a)}{c+a}+\frac{b^2}{c+a}+\frac{c(a+b)}{a+b}+\frac{c^2}{a+b}=a+b+c\)

\(\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

Ta có đpcm.

21 tháng 3 2017

Bài 1:a,b,c ba cạnh tam giác => a,b,c dương

\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)

\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)

\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)

p/s: đề sao làm vậy:

mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn

22 tháng 3 2017

hướng dẫn bài 2,3 giúp mình với

25 tháng 3 2017

2a)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

\(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

2b)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

24 tháng 3 2017

Bài 1)

Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Giải

Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0

Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)\(\dfrac{1}{x+2y}\)

\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)

Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y

9 tháng 6 2018

abcbaccba=0=>ab−c−ba−c−cb−a=0

=>abc=bac+cba=b2ab+acc2(ca)(ab)=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)

Nhân cả 2 vế với 1bc1b−c ta được

a(bc)2=b2ab+acc2(ab)(bc)(ca)(1)a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)

Tương tự ta có:

b(ca)2=c2bc+bca2(ab)(bc)(ca)(2)b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)

c(ab)2=a2ca+cbc2(ab)(bc)(ca)(3)c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)

Cộng theo vế (1);(2);(3) ta có ĐPCM

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Lời giải:
Ta có:

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\Rightarrow \frac{a}{b-c}=\frac{-b}{c-a}+\frac{-c}{a-b}\)

\(\Leftrightarrow \frac{a}{b-c}=\frac{-b(a-b)-c(c-a)}{(a-b)(c-a)}=\frac{b^2+ca-c^2-ab}{(a-b)(c-a)}\)

\(\Rightarrow \frac{a}{(b-c)^2}=\frac{b^2+ca-c^2-ab}{(a-b)(b-c)(c-a)}\)

Hoàn toàn tương tự:

\(\frac{b}{(c-a)^2}=\frac{c^2+ab-a^2-bc}{(a-b)(b-c)(c-a)}\)

\(\frac{c}{(a-b)^2}=\frac{a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}\)

Cộng theo vế các đẳng thức vừa thu được ta có:

\(\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=\frac{b^2+ac-c^2-ab+c^2+ab-a^2-bc+a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}=0\)

Ta có đpcm.

1 tháng 1 2019

0.

24 tháng 5 2018

Áp dụng BĐT Cauchy ta có

\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge a\)

\(\dfrac{b^2}{a+c}+\dfrac{a+c}{4}\ge b\)

\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)

Dấu bằng xảy ra khi a=b=c

Làm tắt vài chỗ thông cảm

24 tháng 5 2018

Câu b,

Ta có BĐT Cauchy \(a^2+b^2\ge2ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\)

\(\Rightarrow\dfrac{ab}{a+b}\le\dfrac{\left(a+b\right)^2}{4\left(a+b\right)}=\dfrac{a+b}{4}\)

Tương tự \(\dfrac{bc}{b+c}\le\dfrac{b+c}{4}\)

\(\dfrac{ac}{a+c}\le\dfrac{a+c}{4}\)

Cộng theo vế ta đc \(VT\le\dfrac{2\left(a+b+c\right)}{4}=\dfrac{a+b+c}{2}\)

Dấu bằng xảy ra khi a=b=c

18 tháng 12 2017

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)\(\Leftrightarrow a+\dfrac{a^2}{b+c}+b+\dfrac{b^2}{c+a}+c+\dfrac{c^2}{a+b}=a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\left(dpcm\right)\)

17 tháng 5 2018

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\) hả Lặng Thầm

17 tháng 3 2018

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)

26 tháng 9 2019

Sai thì bỏ qua ( bạn bè mà ) !

Nếu \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(\Rightarrow\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=-1-1-1=-3\)(vô lí )

\(\Rightarrow a+b+c\ne0\)

Ta có : 

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=a+b+c\)

Đặt a + b + c = H 

\(\Rightarrow\frac{a^2}{b+c}+\frac{ab}{a+c}+\frac{ac}{a+b}+\frac{b^2}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{c^2}{b+a}+\frac{ac}{c+b}+\frac{bc}{a+c}=H\) 

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}+\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{ac}{a+b}+\frac{bc}{a+b}\right)+\left(\frac{ab}{b+c}+\frac{ac}{c+b}\right)=H\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}+a+b+c=H\)( Chỗ này làm hơi tắt bỏ qua nha )

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}=H-\left(a+b+c\right)\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}=0\left(đpcm\right)\)

26 tháng 9 2019

ĐK:....

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)(nhân vào rồi tách)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

 Việt Hoàng _ TTH (*Yonko Team*): Mình chưa xem kỹ nhưng có lẽ hướng làm bạn là sai òi nhé!