K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

bạn tự vẽ hình nhé:

xét tam giác AOB có: AB<AO+OB

                         Do A thuộc tia đối của tia 0C

                       =>A,O,C thẳng hàng .gọi đây là 1

                     tg OBC cân tại O.=>OB=OC  gọi đây là 2

 từ 1 và 2 =>AO+OB=AO+OC=AC

hay AB<AC(dpcm)

Bài làm

a) Ta có: \(\widehat{OAB}+\widehat{OAP}=180^0\)( hai góc kề bù )

\(\widehat{OBA}+\widehat{MBD}=180^0\)( hai góc kề bù )

Mà \(\widehat{OAB}=\widehat{OBA}\)( Do tam giác OAB cân ở O )

=> \(\widehat{OAP}=\widehat{MBD}\)

Xét tam giác APC và tam giác BMD có:

AC = BD ( gt )

\(\widehat{OAP}=\widehat{MBD}\)( cmt )

PA = MB ( gt )

=> Tam giác APC = tam giác BMD ( c.g.c )

b) Vì tam giác APC = tam giác BMD ( cmt )

=> \(\widehat{DMB}=\widehat{CPA}\)

Mà \(\widehat{BMD}=\widehat{CMA}\)( Hai góc đối )

=> \(\widehat{CMA}=\widehat{CPA}\)

=> Tam giác CMP cân ở C

c) Vì tam giác CMP cân ở C

=> CP = CM ( hai cạnh bên )

Mà CP = MD ( do tam giác APC = tam giác BMD )

=> CM = MD

=> M là trung điểm CD ( đpcm )

2 tháng 1 2018

Xét tam giác OAD và tam giác OBC , có :

    Góc O chung

    OA = OB ( gt )

    OD = OC ( gt )

Suy ra tam giác OAD = tam giác OBC ( c - g - c )

2 tháng 1 2018

x O y A C B D K

a, OA = OB; AC = BD => OC = OD

Xét t/g OAD và t/g OBC có:

OA = OB (gt)

góc O chung

OC = OD (cmt)

=> t/g OAD = t/g OBD (c.g.c)

b,Vì t/g OAD = t/gOBD => góc ACK = góc BDK , góc CAK = góc DBK

Xét t/g KAC và t/g KBD có:

góc ACK = góc BDK (cmt)

AC = BD (gt)

góc CAK = góc DBK (cmt)

=> t/g KAC = t/g KBD (g.c.g)

=> AK = BK

Xét t/g OAK và t/g OBK có:

OA = OB (gt)

AK = BK (cmt)

OK chung

=> t/g OAK = t/g OBK (c.c.c)

=> góc AOK = góc BOK 

=> OK là tia p/g của góc xOy

5 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath

1.  a) Vì tam giác ABC cân tại A  =>B=ACD  Mà ACD=ECN(đối đỉnh)  =>B=ECN  Vì AB=AC(tam giác ABC cân tại A)  Mà AC=IC  =>AB=IC  Xét tam giác ABD và tam giác ICE có:  AB=IC(c/m trên)  B=ECN(c/m trên)  BD=CE(gt)  =>tam giác ABD=tam giác ICE(c.g.c)  2.  Xét tam giác BMD và tam giác CEN có:  BDM=CNE(=90 độ)  BD=CE(gt)  B=ECN(c/m trên)  =>tam giác BDM=tam giác CEN(g.c.g)  =>BM=CN(2 cạnh tương ứng)

14 tháng 4 2020

a) ABC cân tại A (gt) => AB=AC và góc ABC = góc ACB

=> góc ABM = góc ACN ( các góc kề bù với góc ABC và góc ACB)

Xét tam giác ABM và tam giác ACN có

AB=AC

 góc ABM= góc ACN (cmt)

BM=CN )gt)

=> tam giác ABM = tam giác ACN ( c.g.c)

=> AM=AN ( 2 cạnh tương ứng)

b) tam giác ABM = tam giác ACN (cmt)

=> góc M= góc N (cặp góc tương ứng)

Xét tam giác HBM và tam giác KCN có

 góc BHM= góc CKN =90 độ (BH vuông góc AM, AN vuông góc CK)

BM =  CN (Gt)

góc M= góc N (cmt)

=> tam giác  HBM = tam giác KCN ( cạnh huyền - góc nhọn)

c) TA có tam giác HBC và tam giác KCN (cmt)

=> góc HBM = góc KCN (hai goc tương ứng)

MÀ góc HBM = góc CBO ( hai góc đối đỉnh )

      góc KCN=góc BCO ( hai góc đối đỉnh )

=> góc CBO= góc BCO

=> tam giác OBC cân  tại O ( dấu hiệu nhận biết tam giác vuông)

14 tháng 4 2020

câu c nhầm là dấu hiệu nhận biết tg cân ms đúng

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:
Xét tam giác $OBD$, áp dụng BĐT tam giác thì:

$DB< OB+OD$

Mà $OB=OC$ nên: $OB+OD=OC+OD=CD$

$\Rightarrow DB< CD$ (đpcm)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Hình vẽ:

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0