Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xéttứ giác AEHF có góc AEH+góc AFH=180 độ
nên AEHF là tứ giác nội tiếp
c: Xét tứ giác AEDC có góc ADC=góc AEC=90 độ
nên AEDC là tứ giác nội tiếp
d: góc EDA=góc ABF
góc FDA=góc FDH=góc ACE
mà góc ABF=góc ACE
nên góc EDA=góc FDA
=>DA là phân giác của góc EDF
a) Xét tứ giác BEHD có
\(\widehat{BEH}\) và \(\widehat{BDH}\) là hai góc đối
\(\widehat{BEH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BEHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a, E, F cùng nhìn BC dưới 1 góc 90 => tứ giác BFEC nội tiếp
cmtt F,E cung nhìn AH dưới 1 góc 90 => tứ giác AEHF nội tiếp =>góc EHC = góc BAC ( cùng bù với EHF)
b, Xét tam giác ABE và tam giác CHE có
góc BAC = góc EHC
góc BEA = góc CEH = 90
=>tam giác BAE đồng dạng với tam giác CHE(gg) =>AE/HE=BE/CE=> EA.EC=EH.EC
c,cmtt câu a, ta được tứ giác BFHD =>góc ABE = góc FDA
tứ giác DHEC nội tiếp =>góc ADE = góc FCA
Lại có góc ABE = góc FCA vì cùng phụ với góc BAC => góc FDA=góc ADE => AD là phân giác của góc FDE
cmtt =>FC và EB là phân giác của góc DFE và DEF
=> H là tâm đường tròn nội tiếp tam giác DEF
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
em lớp 6 nên ko trả lời đc xin lỗi chị nha chúc chị học tốt
Bài 1:
A B C H F D E K L
+) Chứng minh tứ giác BFLK nội tiếp:
Ta thấy FAH và LAH là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\) (Hai góc nội tiếp cùng chắn cung AF)
Lại có \(\widehat{AHF}=\widehat{FBK}\) (Cùng phụ với góc \(\widehat{FAH}\) )
Vậy nên \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)
+) Chứng minh tứ giác CELK nội tiếp:
Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)
Suy ra tứ giác CELK nội tiếp.
Xét tứ giác BEHD có \(\widehat{BEH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BEHD là tứ giác nội tiếp
Xét tứ giác DHFC có \(\widehat{HDC}+\widehat{HFC}=90^0+90^0=180^0\)
nên DHFC là tứ giác nội tiếp
Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp
Xét tứ giác BEFC có \(\widehat{BEC}=\widehat{BFC}=90^0\)
nên BEFC là tứ giác nội tiếp