Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>\(\widehat{FEC}+\widehat{ABC}=180^0\)
Đáp án:
Giải thích các bước giải:
1. Xét tứ giác CEHD có :
CEH = 90 ( BE là đường cao )
CDH = 90 ( AD là đường cao )
⇒ CEH + CDH = 90 + 90 = 180
Mà CEH và CDH là hai góc đối của tứ giác CEHD
⇒ CEHD là tứ giác nội tiếp (đpcm)
2. BE là đường cao ( gt )
⇒ BE ⊥ AB ⇒ BFC = 90
Như vậy E và F cùng nhìn BC dưới một góc 90 ⇒ E và F cùng nằm trên (O) đường kính AB
⇒ 4 điểm B, C, E, F cùng nằm trên một đường tròn (đpcm)
3. Xét ΔAEH và ΔADC có :
AEH = ADC (=90)
A chung
⇒ ΔAEH ~ ΔADC
⇒ AE/AD = AH/AC
⇒ AE.AC = AH.AD
Xét ΔBEC và ΔADC có :
BEC = ADC (=90)
C chung
⇒ ΔBEC ~ ΔADC
⇒ AE/AD = BC/AC
⇒ AD.BC = BE.AC (đpcm)
4. Có : C1 = A1 (cùng phụ góc ABC)
C2 = A1 ( hai góc nối tiếp chắn cung BM )
⇒ C1 = C2 ⇒ CB là tia phân giác HCM
Lại có : CB ⊥ HM
⇒ Δ CHM cân tại C
⇒ CB là đường trung trực của HM
⇒ H và M đối xứng nhau qua BC (đpcm)
5. Có : Bốn điểm B,C,E,F cùng nằm trên một đường tròn ( câu 2 )
⇒ C1 = E1 (hai góc nội tiếp cùng chắn BF) (*)
Có : Tứ giác CEHD nội tiếp (câu 1)
⇒ C1 = E2 (hai góc nội tiếp cùng chắn cung HD ) (**)
Từ (*) và (**) ta suy ra :
E1 = E2
⇒ EB là tia phân giác DEF
Cm tương tự ta được : FC là tia phân giác của DFE
Mà BE và CF cắt nhau tại H
⇒ H là tâm của đường tròn nội tiếp ΔDEF
a) Ta có: \(\widehat{BFC}=90^0\)(\(CF\perp AB\))
nên F nằm trên đường tròn đường kính BC(Định lí)(1)
Ta có: \(\widehat{BEC}=90^0\left(BE\perp AC\right)\)
nên E nằm trên đường tròn đường kính BC(Định lí)(2)
Từ (1) và (2) suy ra E và F cùng nằm trên đường tròn đường kính BC
mà B,C cùng nằm trên đường tròn đường kính BC
nên E,F,B,C cùng thuộc đường tròn đường kính BC
hay BFEC là tứ giác nội tiếp(đpcm)
a, E, F cùng nhìn BC dưới 1 góc 90 => tứ giác BFEC nội tiếp
cmtt F,E cung nhìn AH dưới 1 góc 90 => tứ giác AEHF nội tiếp =>góc EHC = góc BAC ( cùng bù với EHF)
b, Xét tam giác ABE và tam giác CHE có
góc BAC = góc EHC
góc BEA = góc CEH = 90
=>tam giác BAE đồng dạng với tam giác CHE(gg) =>AE/HE=BE/CE=> EA.EC=EH.EC
c,cmtt câu a, ta được tứ giác BFHD =>góc ABE = góc FDA
tứ giác DHEC nội tiếp =>góc ADE = góc FCA
Lại có góc ABE = góc FCA vì cùng phụ với góc BAC => góc FDA=góc ADE => AD là phân giác của góc FDE
cmtt =>FC và EB là phân giác của góc DFE và DEF
=> H là tâm đường tròn nội tiếp tam giác DEF