K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

Kẻ \(HM\perp BC\)
Xét \(\Delta BHM\)\(\Delta BCD\) ta có:
\(\widehat{BMH}=\widehat{BDC}=90^o\)
\(\widehat{CBD}\) chung
\(\Rightarrow\Delta BHM\sim\Delta BCD\left(g.g\right)\)
\(\Rightarrow\dfrac{BM}{BD}=\dfrac{BH}{BC}\Rightarrow BM\times BC=BH\times BD\left(1\right)\)
Xét \(\Delta CMH\)\(\Delta CEB\) ta có:
\(\widehat{BCE}\) chung
\(\widehat{CMH}=\widehat{CEB}=90^o\)
\(\Rightarrow\Delta CMH\sim\Delta CEB\left(g.g\right)\)
\(\Rightarrow\dfrac{CH}{CB}=\dfrac{CM}{CE}\Rightarrow CM\times CB=CH\times CE\left(2\right)\)
Cộng 2 vế của (1)(2) lại với nhau ta đc:
\(BM.BC+CM.CB=BH.BD+CH.CE\)
\(\Leftrightarrow BC\left(BM+CM\right)=BH.BD+CH.CE\)
\(\Rightarrow BC^2=BH.BD+CH.CE\left(đcpcm\right)\)
Vậy..............

26 tháng 7 2018

bonus cho cái hình lun nek
Hỏi đáp Toán

6 tháng 5 2016

a) Chứng minh tam giác AED đông dang tam giác ACB

b) Kẻ HI vuông góc BC

Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.

1 tháng 8 2017

Cho tam giác nhọn ABC có hai đường cao BD và CE căt nhau tại H .

Chứng minh rằng : BC^2=BH.BD+CH.CE

Bài này em có thể giải như sau

1)1) Ta có:

△CDH∼△ACE (g.g)△CDH∼△ACE (g.g)

⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE

△ADH∼△ACF (g.g)△ADH∼△ACF (g.g)

⇒ADAC=AHAF⇒AH.AC=AD.AF⇒ADAC=AHAF⇒AH.AC=AD.AF

Do đó: AC2=AH.AC+CH.AC=AB.AE+AD.AFAC2=AH.AC+CH.AC=AB.AE+AD.AF

2)2) Dựng HFHF vuông góc BC.BC. Ta có:

△BFH∼△BDC△BFH∼△BDC

⇒BFBD=BHBC⇒BF.BC=BD.BH⇒BFBD=BHBC⇒BF.BC=BD.BH

△CFH∼△CEB△CFH∼△CEB

⇒CF/CE=CHCB⇒CF.BC=CE.CH⇒CFCE=CHCB⇒CF.BC=CE.CH

Do đó: BC^2=BF.BC+CF.BC=BD.BH=CE.CH

các dấu kí tự bạn tự thêm nhé

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc CAE chung

Do đó; ΔABD đồng dạng với ΔACE

b: Xét ΔCKH vuông tại K và ΔCEB vuông tại E có

góc ECK chung

Do đó: ΔCKH\(\sim\)ΔCEB

Suy ra: CK/CE=CH/CB

hay \(CH\cdot CE=CB\cdot CK\)

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Lời giải:

Xét tam giác $HEB$ và $HDC$ có:

$\widehat{EHB}=\widehat{DHC}$ (đối đỉnh)

$\widehat{HEB}=\widehat{HDC}=90^0$

$\Rightarrow \triangle HEB\sim \triangle HDC$ (g.g)

$\Rightarrow \frac{HE}{HB}=\frac{HD}{HC}\Rightarrow HE.HC=HB.HD$

Từ kết quả này kết hợp với định lý Pitago:

$BC^2=BE^2+EC^2=HB^2-EH^2+EC^2=HB^2-EH^2+(EH+HC)^2$

$=HB^2+HC^2+2EH.HC=HB^2+HC^2+EH.HC+HB.HD=HB(HB+HD)+HC(HC+EH)$

$=HB.BD+CH.EC$

(đpcm)

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Hình vẽ:

undefined

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạngvới ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AE*AB và AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng vói ΔABC

=>góc ADE=góc ABC

d: ΔADE đồng dạng với ΔABC

=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{ADE}=30\left(cm^2\right)\)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: Xét ΔBKH vuông tại K và ΔBDC vuông tại D có

góc KBH chung

=>ΔBKH đồng dạng với ΔBDC
=>BK/BD=BH/BC

=>BK*BC=BD*BH

12 tháng 3 2018

A B C D E H M a. Vẽ AM (HM) cũng vuông với BC

Xét tam giác BHM và BCD có:

góc BEH = góc BCD = 90o

góc CBD chung

Do đó tam giác BHM~BCD ( g.g)

=> \(\dfrac{BM}{BD}=\dfrac{BH}{BC}\Rightarrow BM.BC=BH.BD\) (1)

Xét tam giác CMH và CEB có:

góc BCE chung

góc HMC = góc CEB = 90o

Do đó tam giác CMH~CEB (g.g)

=> \(\dfrac{CH}{CB}=\dfrac{CM}{CE}\Rightarrow CM.CB=CH.CE\) (2)

Từ (1) và (2) cộng vế theo vế ta được:

BM.BC +CM.CB = BH.BD+CH.CE

=> (BM + CM) .BC = BH . BD + CH . CE

=> BC2 = BH . BD + CH . CE (đpcm)

12 tháng 3 2018

AH cắt BC tại F thì AF _|_ BC
Tg HFC~ Tg BEC
=> HC/BC = FC/EC
=> HC.EC = BC.FC
Tương tự : BH.BD = BF.BC
Suy ra : BH.BD + EC.HC = BC(BF + FC) = BC^2 Hay BC^2 = BH . BD + CH . CE