Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
góc KBH chung
=>ΔBKH đồng dạng với ΔBDC
=>BK/BD=BH/BC
=>BK*BC=BD*BH
a) Chứng minh tam giác AED đông dang tam giác ACB
b) Kẻ HI vuông góc BC
Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.
Lời giải:
Xét tam giác $HEB$ và $HDC$ có:
$\widehat{EHB}=\widehat{DHC}$ (đối đỉnh)
$\widehat{HEB}=\widehat{HDC}=90^0$
$\Rightarrow \triangle HEB\sim \triangle HDC$ (g.g)
$\Rightarrow \frac{HE}{HB}=\frac{HD}{HC}\Rightarrow HE.HC=HB.HD$
Từ kết quả này kết hợp với định lý Pitago:
$BC^2=BE^2+EC^2=HB^2-EH^2+EC^2=HB^2-EH^2+(EH+HC)^2$
$=HB^2+HC^2+2EH.HC=HB^2+HC^2+EH.HC+HB.HD=HB(HB+HD)+HC(HC+EH)$
$=HB.BD+CH.EC$
(đpcm)
Cho tam giác nhọn ABC có hai đường cao BD và CE căt nhau tại H .
Chứng minh rằng : BC^2=BH.BD+CH.CE
Bài này em có thể giải như sau
1)1) Ta có:
△CDH∼△ACE (g.g)△CDH∼△ACE (g.g)
⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE
△ADH∼△ACF (g.g)△ADH∼△ACF (g.g)
⇒ADAC=AHAF⇒AH.AC=AD.AF⇒ADAC=AHAF⇒AH.AC=AD.AF
Do đó: AC2=AH.AC+CH.AC=AB.AE+AD.AFAC2=AH.AC+CH.AC=AB.AE+AD.AF
2)2) Dựng HFHF vuông góc BC.BC. Ta có:
△BFH∼△BDC△BFH∼△BDC
⇒BFBD=BHBC⇒BF.BC=BD.BH⇒BFBD=BHBC⇒BF.BC=BD.BH
△CFH∼△CEB△CFH∼△CEB
⇒CF/CE=CHCB⇒CF.BC=CE.CH⇒CFCE=CHCB⇒CF.BC=CE.CH
Do đó: BC^2=BF.BC+CF.BC=BD.BH=CE.CH
các dấu kí tự bạn tự thêm nhé
Mấy câu trên bạn lm được rồi mimhf sẽ không giải nữa mà chỉ làm câu d thôi.
Ta có : các điểm D; E; F lần lượt nằm trên các cạnh AC; AB; BC
Mà 3 đoạn thẳng AF; BD; CE đồng quy tại H
Áp dụng định lý Ceeva vào tam giác ABC ta được:
EA/EB . FB/FC . DC/DA = 1