Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta DIE\) và \(\Delta DIF\) có:
DE=DF (gt) => \(\Delta DEF\) cân tại D
Góc E= góc F (Tam giác DEF cân tại D)
IE=IF (I là trung điểm EF)
=> Tam giác DIE= tam giác DIF (c.g.c)
b)Tam giác DEF cân tại D => ^E=^F => ^DFI=65o
Tam giác DIE = tam giác DIF (cmt)
=> ^EDI= ^FDI (2 góc tương ứng)
=> ^IDF=^EDF/2= 50o/2 = 25o
Tam giác DIF có: ^IDF+^F+^DIF= 180o
=> ^DIF= 180o - (^IDF+^F) = 180o - (25o+65o) = 180o - 90o = 90o
a) Xét ΔDEH vuông tại H và ΔDFH vuông tại H có
DE=DF(ΔDEF cân tại D)
DH chung
Do đó: ΔDEH=ΔDFH(cạnh huyền-cạnh góc vuông)
Suy ra: HE=HF(hai cạnh tương ứng)
Giải:
Ta có tam giác ABC= tam giác DEF
=>Góc D+Góc E+Góc F=Góc A+Góc B+Góc C=180độ (Tổng 3 góc của tam giác)
mà Góc B=Góc E(2 góc tương ứng)
Góc C=Góc F(2 góc tương ứng)
=>Góc D+Góc B+Góc C= 180độ
T/S: Góc D= 180-70-40(độ)
=70độ
=>Góc D=70độ
Ta thấy BC=EF(2 cạnh tương ứng)
=>BC=EF(=8)
=>EF=8cm
( * ) Vì \(\Delta\)ABC = \(\Delta\)DEF nên EF = BC = 8 cm
( * ) \(\Delta\)ABC có :
 + góc B + góc C = 180 ( tổng 3 góc tam giác )
\(\Rightarrow\)Â + 70 + 40 = 180
\(\Rightarrow\)Â = 180 - ( 70 + 40 ) = 70
Vì \(\Delta\)ABC = \(\Delta\)DEF nên góc D = Â = 70
Ta có: tam giác DEF = tam giác HIK
=> DE = HI ; EF = IK ; DF = HK
=> góc D = góc H
góc E = góc I
góc F = góc K
a/ Ta có: góc E = góc I (vì tam giác DEF = HIK)
Mà góc E = 400 => góc I = 400
b/ Chu vi tam giác DEF= chu vi tam giác HIK
= DE + EF + HK = DE+EF+DF=2+5+6=13 (cm)
Vậy chu vi tam giác DEF = chu vi tam giác HIK = 13 cm
A B C D E F
Xét t/giác DEF có \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\) (tổng 3 góc của 1 t/giác)
=> \(\widehat{D}=180^0-\widehat{E}-\widehat{F}=180^0-70^0-60^0=50^0\)
Xét t/giác ABC và t/giác DEF
có: AB = DE (gt)
AC = DF (gt)
\(\widehat{A}=\widehat{D}=50^0\)
=> t/giác ABC = t/giác DEF (c.g.c)