Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác DEH và tam giác DFH ta có:
DE = DF ( tam giác DEF cân tại D )
DEH = DFH ( tam giác DEF cân tại D )
EH = EF ( H là trung điểm của EF )
=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)
=> DHE=DHF(hai góc tương ứng)
Mà DHE+DHF=180 độ =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )
b) Xét tam giác MEH và tam giac NFH ta có:
EH=FH(theo a)
MEH=NFH(theo a)
=> tam giác MEH = tam giác NFH ( ch-gn)
=> HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )
c) Ta có : +) DM+ME=DE =>DM=DE-ME
+) DN+NF=DF => DN=DF-NF
Mà DE=DF(theo a) ; ME=NF( theo b tam giác MEH=tam giác NFH)
=>DM=DN => tam giác DMN cân tại D
Xét tam giac cân DMN ta có:
DMN=DNM=180-MDN/2 (*)
Xét tam giác cân DEF ta có:
DEF=DFE =180-MDN/2 (*)
Từ (*) và (*) Suy ra góc DMN = góc DEF
Mà DMN và DEF ở vị trí đồng vị
=> MN//EF (dpcm)
d) Xét tam giác DEK và tam giác DFK ta có:
DK là cạnh chung
DE=DF(theo a)
=> tam giác DEK= tam giác DFK(ch-cgv)
=>DKE=DKF(2 góc tương ứng)
=>DK là tia phân giác của góc EDF (1)
Theo a tam giac DEH= tam giac DFH(c.g.c)
=>EDH=FDH(2 góc tương ứng)
=>DH là tia phân giác của góc EDF (2)
Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)
`a,` Xét Tam giác `DEH` và Tam giác `DFH` có:
`DE=DF (\text {Tam giác ABC cân tại A})`
`\widehat{DEF}=\wide{DFE} (\text {Tam giác ABC cân tại A})`
`HE=HF (g``t)`
`=> \text {Tam giác DEH = Tam giác DFH (c-g-c)}`
`b, \text {Vì Tam giác DEH = Tam giác DFH (a)}`
`-> \widehat{DHE}= \widehat{DHF} (\text {2 góc tương ứng})`
`\text {Mà 2 góc này nằm ở vị trí đồng vị}`
`->\widehat{DHE}+ \widehat{DHF}=180^0`
`-> \widehat {DHE}= \wideha{DHF}=180/2=90^0`
`-> DH \bot EF`
`c,` Mình xp sửa đề là: \(\text{"Trên tia ĐỐI của DH lấy điểm K sao cho HD=HK"}\)
Xét Tam giác `DHE` và Tam giác `FHK` có:
`DH=HK (g``t)`
`\widehat{DHE}=\widehat{FHK} (\text {2 góc đối đỉnh})`
`HE=HF (g``t)`
`=> \text {Tam giác DHE = Tam giác FHK (c-g-c)}`
`-> \widehat{DEF}=\widehat{EFK} (\text {2 góc tương ứng})`
`\text {Mà 2 góc này nằm ở vị trí sole trong}`
`-> DE`//`FK (\text {tính chất đt' song song})`
Cho tam giác DEF cân tại D,H là trung điểm EF
a)Chứng minh tam giác DEH = tam giác DFH
b)Chứng minh DH vuông góc với EF
c)Trên tia DH lấy điểm K sao cho HD = HK.Chứng minh DE // với FK
a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có
DE=DF
DH chung
Do đó:ΔDHE=ΔDHF
b: EF=8cm nên HE=4cm
=>DH=3cm
c: Xét ΔDMH vuông tại M và ΔDNH vuông tại N có
DH chung
\(\widehat{MDH}=\widehat{NDH}\)
Do đó:ΔDMH=ΔDNH
Suy ra: HM=HN
\(\text{a)}\text{Vì }\Delta DEF\text{ cân tại D}\)
\(\Rightarrow DE=DF\)
\(\widehat{E}=\widehat{F}\)
\(\text{Xét }\Delta DHE\text{ và }\Delta AHF\text{ có:}\)
\(DE=DF\left(cmt\right)\)
\(BH\text{ chung}\)
\(\widehat{E}=\widehat{F}\left(cmt\right)\)
\(\Rightarrow\Delta DHE=\Delta DHF\left(c-g-c\right)\)
\(\Rightarrow EH=HF\text{(hai cạnh tương ứng)}\)
\(\text{b)}\text{Vì }EH=HF\left(cmt\right)\)
\(\Rightarrow EH=\dfrac{EF}{2}=\dfrac{8}{2}=4\left(cm\right)\)
\(\text{Xét }\Delta DEH\text{ có:}\)
\(DE^2=DH^2+EH^2\)
\(\Rightarrow DH^2=DE^2-EH^2\text{(định lí Py ta go đảo)}\)
\(\Rightarrow DH^2=5^2-4^2=25-16=9\left(cm\right)\)
\(\Rightarrow DH=\sqrt{9cm}=3\left(cm\right)\)
\(\text{c)Xét }\Delta HMD\text{ và }\Delta HND\text{ có:}\)
\(DH\text{ chung}\)
\(\widehat{D_1}=\widehat{D_2}\left(\Delta DHE=\Delta DHF\right)\)
\(\widehat{DMH}=\widehat{DNH}=90^0\)
\(\Rightarrow\Delta HMD=\Delta HND\left(ch-cgv\right)\)
\(\Rightarrow HM=HN\text{( hai cạnh tương ứng)}\)
a) xét tam giác DHE và tam giác DHF có
DH chung
DE = DF (gt)
góc DHE = góc DHF (=90 độ)
=> tam giác DHE = tam giác DHF (c.g.c)
=> HE = HF
=> H là trung điểm của EF
b) xét tam giác EMH và tam giác FNH có
HE = HF (cmt)
Góc MEH = góc MFH (gt)
Góc EHM = góc FHM (đối đỉnh)
=> tam giác EMH = tam giác FNH (g.c.g)
=> HM = HN
=> tam giác HMN cân tại H
a: Xét ΔDEH vuông tại H và ΔDFH vuông tại H có
DE=DF
DH chung
=>ΔDEH=ΔDFH
=>EH=FH
=>H là trung điểm của EF
b: Xet ΔDMH và ΔDNH có
DM=DN
góc MDH=góc NDH
DH chung
=>ΔDMH=ΔDNH
=>HM=NH
c: Xet ΔDEF có DM/DE=DN/DF
nên MN//EF
d: ΔDMN cân tại D
mà DI là trug tuyến
nên DI là phân giác của góc EDF
=>D,I,H thẳng hàng
Bài 10. Cho tam giác DEF vuông tại D, có . Tia phân giác của góc F cắt DE tại I. Kẻ IH vuông góc với EF tại H ( ).
a. Chứng minh: DFI = HFI
b. DFH là tam giác gì? Vì sao?.
c. Qua E kẻ đường thẳng vuông góc với DH tại N. Chứng minh EN // FI.
Bài 11. Cho cân ở A. Trên tia đối của các tia BC và CB lấy thứ tự hai điểm D và E sao cho BD = CE.
a) Chứng minh cân
b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của .
c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE Chứng minh: BH = CK.
d) Chứng minh ba đường thẳng AM, BH, CK đồng quy. Đây ạ
a) Xét ΔDEH vuông tại H và ΔDFH vuông tại H có
DE=DF(ΔDEF cân tại D)
DH chung
Do đó: ΔDEH=ΔDFH(cạnh huyền-cạnh góc vuông)
Suy ra: HE=HF(hai cạnh tương ứng) và \(\widehat{EDH}=\widehat{FDH}\)(hai góc tương ứng)
a) Xét ΔDEH vuông tại H và ΔDFH vuông tại H có
DE=DF(ΔDEF cân tại D)
DH chung
Do đó: ΔDEH=ΔDFH(cạnh huyền-cạnh góc vuông)
Suy ra: HE=HF(hai cạnh tương ứng)