K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`a,` Xét Tam giác `DEH` và Tam giác `DFH` có:

`DE=DF (\text {Tam giác ABC cân tại A})`

`\widehat{DEF}=\wide{DFE} (\text {Tam giác ABC cân tại A})`

`HE=HF (g``t)`

`=> \text {Tam giác DEH = Tam giác DFH (c-g-c)}`

`b, \text {Vì Tam giác DEH = Tam giác DFH (a)}`

`-> \widehat{DHE}= \widehat{DHF} (\text {2 góc tương ứng})`

`\text {Mà 2 góc này nằm ở vị trí đồng vị}`

`->\widehat{DHE}+ \widehat{DHF}=180^0`

`-> \widehat {DHE}= \wideha{DHF}=180/2=90^0`

`-> DH \bot EF`

`c,` Mình xp sửa đề là: \(\text{"Trên tia ĐỐI của DH lấy điểm K sao cho HD=HK"}\)

Xét Tam giác `DHE` và Tam giác `FHK` có:

`DH=HK (g``t)`

`\widehat{DHE}=\widehat{FHK} (\text {2 góc đối đỉnh})`

`HE=HF (g``t)`

`=> \text {Tam giác DHE = Tam giác FHK (c-g-c)}`

`-> \widehat{DEF}=\widehat{EFK} (\text {2 góc tương ứng})`

`\text {Mà 2 góc này nằm ở vị trí sole trong}`

`-> DE`//`FK (\text {tính chất đt' song song})`

loading...

 

18 tháng 3 2023

Cho tam giác DEF cân tại D,H là trung điểm EF

a)Chứng minh tam giác DEH = tam giác DFH 

b)Chứng minh DH vuông góc với EF 

c)Trên tia DH lấy điểm K sao cho HD = HK.Chứng minh DE // với FK

 
29 tháng 6 2018

a,ta có;\(\widehat{E}=\widehat{F}\)(do \(DE=DF\)nên\(\Delta DEF\)cân tại D)mà\(\widehat{E}=50^0=>\widehat{F}=50^0\)

b.xét\(\Delta DEF\)cân tại D có(1)

DH là đường trung tuyến ứng với cạnh EF(do H là trung điểm của EF)(2)

từ (1) và(2)=>DH đồng thời là đường cao ứng với cạnh EF=>\(DH\perp EF\)tại H

c.xét\(\Delta DMH\)\(\Delta DNH\)

DM=DN(GT)

HM=HN(GT)

DM:chung

=>\(\Delta DMH=\Delta DNH\left(c-c-c\right)\)

=>\(\widehat{DMH}=\widehat{DNH}\)(hai góc tương ứng)

18 tháng 12 2016

a)Xét ΔAMD và ΔCMB có :

góc AMB = góc CMD ( đối đỉnh)

AM = NC ( GT)

BM = MD ( GT)

--->ΔAMD = ΔCMB(c.g.c)

b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)

tạo ra hai góc so le trong bằng nhau

--->AD//BC

c)Xét ΔABC và ΔCDA có :

AC : cạnh chung

AD = BC (ΔAMD = ΔCMB)

góc CAD = góc ACB(ΔAMD = ΔCMB)

--->ΔABC = ΔCDA(c.g.c)

d)ta có AE + ED = AD

AF+ FC = BC

mà EF= BF; AD = BC

--->AE = FC

xét ΔAFC và ΔACE có :

AE = FC (CMT)

AC : cạnh chung

góc CAE = góc ACF (ΔAMD = ΔCMB)

--->ΔAFC = ΔCEA ( c.g.c)

--->góc AEC = góc AFC ( hai góc tương ứng)

--->góc AEC = góc AFC=90'

--->AF vuông góc với BC

Hỏi đáp Toán

18 tháng 12 2016

a) Xét t/g AMD và t/g CMB có:

AM = CM (gt)

AMD = CMB ( đối đỉnh)

MD = MB (gt)

Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)

b) t/g AMD = t/g CMB (câu a)

=> ADM = CBM (2 góc tương ứng)

Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)

c) t/g AMD = t/g CMB (câu a)

=> AD = BC (2 cạnh tương ứng)

Xét t/g ABC và t/g CDA có:

BC = AD (gt)

ACB = CAD (so le trong)

AC là cạnh chung

Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)

d) Có: AD = BC (câu c)

DE = BF (gt)

Suy ra AD - DE = BC - BF

=> AE = CF

Mà AE // CF do AD // BC (câu b)

Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)

Lại có: CE _|_ AD (gt) => AF _|_ AD

Mà BC // AD (câu b) => AF _|_ BC (đpcm)

 

1 tháng 3 2021

câu c) C/M: MN//EF

1 tháng 3 2021

 cho tam giác DEF nha

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v