K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

trong sbt toán 7 tập 2 bạn tham khảo được đó

12 tháng 8 2015

- CM : AM < (AB+BC):2

Tren tia AM lay D / M la trung diem AD

cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD

ta co : AD<AC+CD ( bdt trong tam giac ACD)

ma AD=2AM ( M la trung diem AD) va AB= CD ( cmt)

nen 2AM< AC+AB

--> AM < ( AC+AB):2

- cm ( AB+AC-BC):2 < AM

ta co : AB < AM+BM ( bdt trong tam giac ABM )

            AC< AM+MC ( bdt trong tam giac AMC )

==> AB+AC < AM+BM+AM+MC

----> A

28 tháng 12 2015

Đề mấy chữ cuối cùng ko đọc đc bạn à

15 tháng 3 2018

Hình tự vẽ nha

Ta luôn có:

\(AD>AB-BD\)

\(AD>AC-CD\)

Suy ra: \(2AD>AB+AC-\left(BD+CD\right)\)

Suy ra: \(AD>\frac{AB+AC-\left(BD+CD\right)}{2}>\frac{AB+AC-BC}{2}\)(1)

Mặt khác: 

\(AB>AD-BD\)

\(AC>AD-CD\)

Suy ra: \(AB+AC>2AD-\left(BD+CD\right)>2AD-BC\)

\(\Rightarrow AB+AC+BC>2AD\)

\(\Rightarrow\frac{AB+AC+BC}{2}>AD\)(2)

Từ (1) và (2)

......

BN tự Kết luận.

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

19 tháng 3 2016

Lấy D thuộc tia đối của tia MA sao cho: MA =MD

Chứn minh MAB=MDC (c.g.c)

suy ra AB=CD ( Hai cạnh tương ứng)

tam giác ACD có: AD < AC +CD (Bất đẳng thức tam giác)

suy ra AD< AC+ AB

mà AD=2AM

suy ra 2AM< AC+AB

suy ra AM < (AB+ AC)/2 (đpcm)