K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

- CM : AM < (AB+BC):2

Tren tia AM lay D / M la trung diem AD

cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD

ta co : AD<AC+CD ( bdt trong tam giac ACD)

ma AD=2AM ( M la trung diem AD) va AB= CD ( cmt)

nen 2AM< AC+AB

--> AM < ( AC+AB):2

- cm ( AB+AC-BC):2 < AM

ta co : AB < AM+BM ( bdt trong tam giac ABM )

            AC< AM+MC ( bdt trong tam giac AMC )

==> AB+AC < AM+BM+AM+MC

----> A

28 tháng 12 2015

Đề mấy chữ cuối cùng ko đọc đc bạn à

19 tháng 3 2016

Lấy D thuộc tia đối của tia MA sao cho: MA =MD

Chứn minh MAB=MDC (c.g.c)

suy ra AB=CD ( Hai cạnh tương ứng)

tam giác ACD có: AD < AC +CD (Bất đẳng thức tam giác)

suy ra AD< AC+ AB

mà AD=2AM

suy ra 2AM< AC+AB

suy ra AM < (AB+ AC)/2 (đpcm)

22 tháng 3 2018

 CM : AM < (AB+BC):2 Tren tia AM lay D / M la trung diem AD cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD ta co : AD AM < ( AC+AB):2 - cm ( AB+AC-BC):2 < AM ta co : AB < AM+BM ( bdt trong tam giac ABM )             AC< AM+MC ( bdt trong tam giac AMC ) ==> AB+AC < AM+BM+AM+MC

:34

22 tháng 3 2018

Bạn giải chi tiết được không

5 tháng 5 2017

Có điểm C' ?

5 tháng 5 2017

Hình như là điểm C đó cậu.Chắc mình gõ nhầm

28 tháng 4 2019

A B C M D

Trên tia đối của tia AM lấy điểm D sao cho AM=MD

Xét tam giác AMB VÀ TAM GIÁC DMC có

MB=MC(gt)

AM=MD(cách dựng)

\(\widehat{AMB}=\widehat{DMC}\)(ĐÓI ĐỈNH)

\(\Rightarrow\)Tam giác AMB=Tam giác BMC(c-g-c)

\(\Rightarrow\)AB=CD(2 cạnh tương ứng)

Xét tam giác ACD có

AD<CD+AC(bất đẳng thức tam giác)

\(\Rightarrow\)AD<AB+AC(VÌ AB=CD)

Mà AD=AM+MD=2AM

\(\Rightarrow2AM< AB+AC\)

\(\Rightarrow AM< \frac{AB+AC}{2}\)(ĐPCM)

28 tháng 4 2019

Kẻ đoạn thẳng AM

Trên tia AM lấy điểm K sao cho M là trung điểm của AK

=> MA = MK = AK/2 => 2AM = AK

M là trung điểm của BC ( gt ) => MB = MC

Xét tam giác AMB và tam giác KMC có :

MA = MK ( cmt )

AMB = KMC ( đối đỉnh )

MB = MC ( cmt )

Do đó tam giác AMB = tam giác KMC ( c . g . c )

=> AB = CK ( 2 cạnh tương ứng )

CÓ AK < AC + CK ( bất đẳng thức trong tam giác )

hay 2AM < AC + AB

=> AM < \(\frac{AC+AB}{2}\)( dpcm )

Vậy ...