Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB.cosB + cosC.AC=\(\frac{AB^2}{BC}+\frac{AC^2}{BC}\)=\(\frac{BC^2}{BC}\)=BC
b) CMR: tam giác ABC đồng dạng với tam giác AFE(g-g)
\(\Rightarrow\)\(\frac{AB}{AF}=\frac{BC}{EF}\)
\(\Rightarrow\)AB.EF=BC.AF
CMR: tam giác ABH đồng dạng với tam giác AHE (g-g)
\(\Rightarrow\)\(\frac{AB}{AH}=\frac{AH}{AE}\)
\(\Rightarrow\)\(\frac{AH}{AE}=\frac{AH.AB}{AH^2}\)\(\Rightarrow\)\(\frac{AH}{AE}=\frac{EF.AB}{AH^2}\)
\(\Rightarrow\)\(\frac{AH}{AE}=\frac{AF.BC}{AH^2}\)\(\Rightarrow\frac{AH^3}{BC}=AE.AF\)
Ta có:\(S_{AEHF}=AE.AF\)
\(\Rightarrow S_{AEHF}=\frac{AH^3}{BC}\)
Cô hướng dẫn nhé.
a. Kẻ \(DK\perp BC.\)
Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)
b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)
\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)
c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)
a) Tam giác ABH vuông tại H, HE là đường cao
\(\Rightarrow AH^2=AE.AB\)(1)
Tam giác AHC vuông tại H, HF là đường cao
\(\Rightarrow AH^2=AF.AC\)(2)
từ (1) và (2) nên AE.AB=AF.AC(đpcm)
b) Tam giác ABC vuông tại A, AH là đường cao
\(\Rightarrow AB^2=BH.BC\)(3)
Tam giác BIC vuông tại B, BA là đường cao
\(\Rightarrow AB^2=IA.IC\) mà theo (3) thì \(BH.BC=IA.IC\left(\text{đ}pcm\right)\)
c) Tam giác ABC vuông tại A, đường cao AH
\(AH^2=BH.CH\Leftrightarrow AH^2=9.16=144\Leftrightarrow AH=12\)(cm)
BC=9+16=25(cm)
Tam giác ABC vuông tại A, AH là đường cao
\(AB^2=BH.BC=9.25=225\Leftrightarrow AB=15\)
\(AC^2=CH.BC=16.25=400\Leftrightarrow AC=20\)
Tam giác ABC có AD là phân giác
\(\frac{AB}{AC}=\frac{BD}{CD}\Leftrightarrow\frac{15}{20}=\frac{BD}{CD}\Leftrightarrow\frac{15}{BD}=\frac{20}{CD}=\frac{15+20}{BD+CD}=\frac{35}{25}=\frac{7}{5}\)
\(\Leftrightarrow BD=\frac{15.5}{7}=\frac{75}{7}\)\(\Leftrightarrow DH=BD-BH=\frac{75}{7}-9=\frac{12}{7}\)
Áp dụng định lý Py-ta-go vào tam giác vuông AHD:
\(AD^2=DH^2+AH^2=\frac{144}{49}+144=\frac{7200}{49}\Rightarrow AD=\frac{60\sqrt{2}}{7}\)
d) Tam giác ABC vuông tại A, AH là đường cao
\(AB^2=BH.BC\);\(AC^2=CH.BC\)
\(\Rightarrow\frac{AB^2}{AC^2}=\frac{HB.BC}{CH.BC}=\frac{BH}{CH}\left(\text{đ}pcm\right)\)
Còn câu e chờ mình xíu
c) Ta sẽ chứng minh bổ đề sau để dễ dàng tính: Cho \(\Delta\)ABC vuông tại A đường phân giác AD. Chứng minh: \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
C/m: Tự kẻ hình nha .Kẻ DH // AB => DH vuông góc AC. Vì \(\Delta\)ADH vuông tại H có góc DAH=90 nên \(\Delta\)ADH vuông cân tại H
=> \(AD=\sqrt{2}DH\Rightarrow DH=\left(\frac{AD}{\sqrt{2}}\right)\)
Ta có DH // AB => \(\frac{DH}{AB}=\frac{HC}{AC}=\frac{AC-AH}{AC}\) vì (HC=AC-AH)
A B C H E F O
a) \(\Delta\)ABC vuông tại A có trung tuyến AO nên ^OAC = ^OCA. Do ^OCA = ^BAH (Cùng phụ ^HAC)
Nên ^OAC = ^BAH = ^ AEF (Do tứ giác AEHF là hcn)
Mà ^AEF + ^AFE = 900 => ^OAC + ^AFE = 900 => OA vuông góc EF (đpcm).
b) Biến đổi tương đương:
\(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)
\(\Leftrightarrow BE\sqrt{BC.CH}+CF\sqrt{BC.BH}=AB.BC\)(Nhân mỗi vế với \(\sqrt{BC}\))
\(\Leftrightarrow BE\sqrt{AC^2}+CF\sqrt{AB^2}=AB.BC\) (Hệ thức lương)
\(\Leftrightarrow BE.AC+CF.AB=AB.BC\)
\(\Leftrightarrow BH.AH+CH.AH=AB.BC\)(Vì \(\Delta\)EBH ~ \(\Delta\)HAC; \(\Delta\)FHC ~ \(\Delta\)HBA)
\(\Leftrightarrow AH\left(BH+CH\right)=AB.BC\)
\(\Leftrightarrow AH.BC=AB.AC\) (luôn đúng theo hệ thức lượng)
Vậy có ĐPCM.