K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABH vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

2: Ta có: \(AE\cdot AB=AF\cdot AC\)

nên AE/AC=AF/AB

Xet ΔAEF vuông tại A và ΔACB vuông tại A có 

AE/AC=AF/AB

Do đó: ΔAEF\(\sim\)ΔACB

3: \(AH=\sqrt{8\cdot18}=12\left(cm\right)\)

=>EF=12(cm)

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy 

23 tháng 8 2018

ý 1 câu a )

 có ED vuông góc BC  ; AH vuông góc BC  => ED//AH =>  tam giác CDE đồng dạng vs tam giác CHA  ( talet)      (1)

 xét tam giác CHA  và tam giác CAB  có CHA=CAB=90 độ ; C chung => tam giác CHA  đồng dạng vs tam giác CAB ( gg) (2)

  từ (1) và (2) =>tam giác CDE  đồng dạng tam giác CAB  (  cùng đồng dạng tam giác CHA )

 có tam giác CDE đồng dạng tam giác CAB  (cmt) => \(\frac{CE}{CB}=\frac{CD}{CA}\)

xét tam giác BAC  và tam giác ADC  có góc C chung và \(\frac{CE}{BC}=\frac{CD}{AC}\left(CMT\right)\) => tam giác BAC đồng dạng vs tam giác ADC (  trường hợp c-g-c) , mấy câu kia quên mịa nó r -.-

25 tháng 8 2018

thanks bạn

30 tháng 9 2016

a) Chứng minh \(\Delta ABH\)đồng dạng với \(\Delta CAH\)(G.G)

\(=>\frac{BH}{AB}=\frac{AH}{AC}\) \(=>\frac{BH}{15}=\frac{3}{5}\)

\(=>BH=9\)

Mà \(AB^2=BH.BC\)

=> \(BC=\frac{15^2}{9}=25\)

=> \(HC=25-9=16\)

30 tháng 9 2016

Ta có \(AH^2=HB.HC\)

=> \(AH^4=HB^2.HC^2\)

Mà \(\begin{cases}HB^2=BE.AB\\HC^2=CF.AC\end{cases}\)

=> \(AH^4=BE.CF.AB.AC\)

Mà \(AB.AC=AH.BC\)

=> \(AH^4=BE.CF.BC.AH\)

=> đpcm

 

 

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(

B1:\(A=\left(1+\frac{7}{\sqrt{x}+1}+\frac{25}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\)\(B=a+\frac{2}{\sqrt{x}+1}\)a)Tính C=A:B.Tìm giá trị của C khi x=9.b)Tìm x để C<1.c)Tìm x nguyên để C nguyên.B2.Cho (d):y=(m-2)x-2m+1  (m khác 2).1)CMR d luôn đi qua 1 điểm cố định.2)Cho điểm A(-1;1).Tìm m để khoảng cách từ A đến d lớn nhất,nhỏ nhất.B3.Cho hệ:\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)Tìm m để hệ có nghiệm...
Đọc tiếp

B1:\(A=\left(1+\frac{7}{\sqrt{x}+1}+\frac{25}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\)

\(B=a+\frac{2}{\sqrt{x}+1}\)

a)Tính C=A:B.Tìm giá trị của C khi x=9.

b)Tìm x để C<1.

c)Tìm x nguyên để C nguyên.

B2.Cho (d):y=(m-2)x-2m+1  (m khác 2).

1)CMR d luôn đi qua 1 điểm cố định.

2)Cho điểm A(-1;1).Tìm m để khoảng cách từ A đến d lớn nhất,nhỏ nhất.

B3.Cho hệ:\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

Tìm m để hệ có nghiệm duy nhất thỏa mãn x+y=1.

B4.Cho tam giác ABC,AH vuông BC sao cho AH=BH=2CH.Kẻ BK vuông AC cắt AH ở I.M là trung điểm IH.CM cắt BK và AB lần lượt ở F và N.

1)CMR:I là trung điểm AH và tam giác ABC đồng dạng tam giác NAM.

2)Cho diện tích tam giác ABC là 3.Tính AN và diện tích tam giác IMF.

B5:Cho a,b,c>0 thỏa mãn a+b+c=3.

Tìm min \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)

 

1
10 tháng 1 2020

3/ \(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

Để PT trên có nghiệm duy nhất

\(\frac{m}{1}\ne\frac{1}{m}\Rightarrow m^2\ne1\Rightarrow m\ne1\)

\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\x+my=2m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\m^2x-x=3m^2-2m-1\left(#\right)\end{cases}}\)

Từ (#) \(m^2x-x=3m^2-2m-1\)

\(\Leftrightarrow x\left(m^2-1\right)=3m^2-2m-1\)

\(\Rightarrow x=\frac{3m^2-2m-1}{m^2-1}=\frac{\left(3m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{3m+1}{m+1}\)

Có \(mx+y=3m\Leftrightarrow y=3m-mx=3m-\frac{m\left(3m+1\right)}{m+1}=\frac{3m^2+3m-3m^2-m}{m+1}=\frac{2m}{m+1}\)

=> Vậy PT trên có 1 nghiệm \(\left(x;y\right)=\left(\frac{3m+1}{m+1};\frac{2m}{m+1}\right)\)

Và x + y =1

\(\Rightarrow\frac{3m+1}{m+1}+\frac{2m}{m+1}=1\)

\(\Leftrightarrow\frac{5m+1}{m+1}=1\)

\(\Leftrightarrow\frac{5m+1}{m+1}-1=0\)

\(\Leftrightarrow\frac{5m+1-m-1}{m+1}=0\)

\(\Leftrightarrow\frac{4m}{m+1}=0\)

\(\Rightarrow4m=0\Rightarrow m=0\)

Mik không giỏi dạng này nên có j sai ib ạ >: