Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sử dụng đồng dạng và các câu sau có thể dựa vào các câu trc thay vào và chứng minh nha
a) Bn có thể áp dụng hệ thức trong tam giác vuông hoặc bn sd tam giác đồng dạng :
Cách 1 :Xét \(\Delta ABC\) và \(\Delta HCA\) có :
\(\widehat{BAC}=\widehat{CHA}=90^o;\widehat{ABC}=\widehat{HCA}\)
=> \(\Delta ABC\) ~ \(\Delta HCA\)
=> \(\frac{AC}{HC}=\frac{BC}{CA}\Rightarrow AC^2=HC.BC\)
Cách 2 : Xét \(\Delta ABC\) vuông tại A có đường cao AH
\(\Rightarrow AC^2=HC.BC\)
b) Xét \(\Delta ABC\) vuông tại A
=> \(BC^2=AB^2+AC^2=6^2+8^2=100\)
=> \(BC=10\) cm
Xét \(\Delta ABC\) vuông tại A có đường cao AH
=> AB . AC = AH . BC
=> AH = 4,8 cm
c) Xet \(\Delta ABC\) vuông tại A có đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Mình giải bài 2 đại số nhé :3
CM : \(a^2+b^2+c^2\ge ab+bc+ac\left(1\right)\\ \left(1\right)\Leftrightarrow a^2+b^2+c^2-ab-bc-ac\ge0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) (luôn luông đúng)