Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: ΔACB vuông tại A có AH là đường cao
nên AB^2=BH*BC
Mk chỉnh lại đề câu b: Chứng minh: \(AB^2=BH.BC\) hoặc \(HA^2=HB.HC\)
a) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC^2=6^2+8^2=100\)
\(\Rightarrow\)\(BC=\sqrt{100}=10\)
b) Xét \(\Delta ABH\)và \(\Delta CBA\)có:
\(\widehat{B}\) chung
\(\widehat{AHB}=\widehat{CAB}=90^0\)
suy ra: \(\Delta ABH~\Delta CBA\)(g.g)
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\) \(\Rightarrow\)\(AB^2=BH.BC\)
Chứng minh: \(AH^2=HB.HC\) thì c/m: \(\Delta HAB~\Delta HCA\)(g.g)
\(\Rightarrow\)\(AB^2=BH.BC\)
a) Xét \(\Delta BAH\) và \(\Delta BCA\)có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
suy ra: \(\Delta BAH~\Delta BCA\) (g.g)
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=10\)
\(\Delta ABC\)có AK là phân giác
\(\Rightarrow\)\(\frac{KB}{AB}=\frac{KC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{KB}{AB}=\frac{KC}{AC}=\frac{KB+KC}{AB+AC}=\frac{5}{7}\)
suy ra: \(KB=\frac{30}{7}\) \(KC=\frac{40}{7}\)
c) Xét \(\Delta ABD\)và \(\Delta HBI\)có:
\(\widehat{ABD}=\widehat{HBI}\) (gt)
\(\widehat{BAD}=\widehat{BHI}=90^0\)
suy ra: \(\Delta ABD~\Delta HBI\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BD}{BI}\)
\(\Rightarrow\)\(AB.BI=BD.HB\)
d) \(S_{ABC}=\frac{1}{2}.AB.AC=24\)
\(\Delta ABH~\Delta CBA\) (câu a)
\(\Rightarrow\)\(\frac{S_{ABH}}{S_{CBA}}=\left(\frac{AB}{BC}\right)^2=\frac{9}{16}\)
\(\Rightarrow\)\(S_{ABH}=\frac{9}{16}.S_{ABC}=13,5\)
â) chứng minh AB2 = BH . BC
Xét : \(\Delta ABHva\Delta ABC,co\):
\(\widehat{B}\) là góc chung
\(\widehat{A}=\widehat{H}=90^o\)
Do do : \(\Delta ABH~\Delta ABC\left(g-g\right)\)
=> \(\frac{AB}{HB}=\frac{BC}{AB}\) (tỉ lệ tương ứng của 2 tam giác đồng dạng )
=> AB . AB = BH . BC
=> AB2 = BH . BC
b)
a) áp dụng định lý py-ta-go dối với ▲ABC vuông tại A ta có:
BC2=AB2+AC2
BC=10 cm
b)cm ▲HBA dồng dạng ▲ABC(g-g)
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow AB^2=BH\cdot BC\)
thay số vào ta có : 62=BHx10
BH=3.6 cm
HC=BC-BH=10-3.6=6.4 cm
c) Xét tam giác AHD vuông tại H có AD là cạnh huyền, AH là cạnh góc vuông \(\Rightarrow\) AH < AD (1)
Xét tam giác ADC có góc ADC là góc ngoài tại D của tam giác AHD
\(\Rightarrow\) góc ADC = góc AHD + góc HAD = 90 + góc HAD > 90
\(\Rightarrow\) góc ADC là góc tù
\(\Rightarrow\) AC > AD (2)
Từ (1) và (2) \(\Rightarrow\) D nằm giữa C và H (*)
Lại có H \(\in\) BC \(\Rightarrow\) H nằm giữa B và C (**)
Từ (*) và (**) \(\Rightarrow\) H luôn nằm giữa B và D
Bạn biết giải ý B ko giúp mk vs . mk cũng đang làm bài này đây