K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2021

cau co cau tra loi chx 

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

c: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

BH=AB^2/BC=6^2/10=3,6cm

CH=10-3,6=6,4cm

d: AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=10/7

=>DB=30/7cm

4 tháng 5 2021

cau co cau  tra loi chx

b)Chứng minh ABC   AHB???

23 tháng 1 2022

a, Theo pytago tam giác ABC vuông tại A

\(BC=\sqrt{36+64}=10cm\)

b, Xét tam giác ABC và tam giác AHB

^BAC = ^AHB = 900 

^B _ chung 

Vậy tam giác BAC ~ tam giác BHA ( g.g ) 

c, => AB / BH = BC / AB => AB^2 = BH.BC 

=> BH = AB^2/BC = 36/10 = 18/5 cm 

=> CH = BC - BH = 32/5 cm 

d, Ta có AD là đường pg 

\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\Rightarrow\dfrac{DC}{AC}=\dfrac{DB}{AB}\)

Theo tc dãy tỉ số bằng nhau

\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DB=\dfrac{5}{7}.6=\dfrac{30}{7}cm\)

 

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

DO đó: ΔABC\(\sim\)ΔHBA

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot CB\)

8 tháng 4 2016

a) sử dụng Py-ta-go

b) tam giác đồng dạng

c) t/c đường p.g 

8 tháng 4 2016

a) áp dụng định lý py-ta-go dối với ▲ABC vuông tại A ta có:

BC2=AB2+AC2

BC=10 cm

b)cm ▲HBA dồng dạng ▲ABC(g-g)

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\)

\(\Rightarrow AB^2=BH\cdot BC\)

thay số vào ta có : 62=BHx10

BH=3.6 cm

HC=BC-BH=10-3.6=6.4 cm

a: BC=10cm

b: Xét ΔCAB vuông tại A và ΔAHB vuông tại H có 

\(\widehat{CBA}\) chung

Do đó: ΔCAB\(\sim\)ΔAHB

c: Ta có: ΔCAB\(\sim\)ΔAHB

nên AC/HA=AB/HB=CB/AB

hay \(AB^2=BH\cdot BC\)

BH=3,6cm

=>CH=6,4cm

17 tháng 3 2023

Ủa còn câu D đâu