Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tanB=\frac{3}{4}\)
\(\Rightarrow\frac{AB}{BC}=\frac{3}{4}\)
Ta có:
\(AC^2+AB^2=BC^2\)
\(\Rightarrow AB^2=BC^2-AC^2=\frac{16}{9}AC^2-AC^2=\frac{7}{9}AC^2=144\)
\(\Rightarrow AC=13,6\)
\(\Rightarrow BC=18,1\)
Lời giải:
Ta có: $\frac{3}{4}=\tan B=\frac{AC}{AB}$
$\Rightarrow AC=\frac{3}{4}AB=\frac{3}{4}.12=9$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15$ (cm) - theo định lý Pitago
$\cot C=\frac{AC}{AB}=\tan B=\frac{3}{4}$
$\Rightarrow \widehat{C}=53,13^0$
\(\tan B=\sqrt{3}\Rightarrow\widehat{B}=60^0\)
\(sinB=\frac{AC}{BC}\Rightarrow AC=sinB.BC=sin60.BC=\frac{\sqrt{3}}{2}.2=\sqrt{3}\approx1,73cm\)
\(cosB=\frac{AB}{BC}\Rightarrow AB=cos60.BC=\frac{1}{2}.2=1cm\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Tính đc tan B suy ra tính đc B. Tính đc B là tính đc AB vs Ac r còn đâu
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
YHoàng Tử HàNguyễn Thị Diễm QuỳnhBonkingVũ Huy Hoànglê thị hương giangNguyễn Trần Nhã AnhThảo Nguyễn Phạm PhươngLuân Đào
Áp dụng hệ thức lượng trong tam giác vuông:
\(\tan B=\frac{AC}{AB}\Rightarrow AC=AB\sqrt{3}\)
Có \(AB^2+AC^2=BC^2=4\)
\(\Leftrightarrow AB^2+3AB^2=4\Leftrightarrow AB=1\left(cm\right)\)
\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)