K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

\(\tan B=\sqrt{3}\Rightarrow\widehat{B}=60^0\)

\(sinB=\frac{AC}{BC}\Rightarrow AC=sinB.BC=sin60.BC=\frac{\sqrt{3}}{2}.2=\sqrt{3}\approx1,73cm\)

\(cosB=\frac{AB}{BC}\Rightarrow AB=cos60.BC=\frac{1}{2}.2=1cm\)

Tính đc tan B suy ra tính đc B. Tính đc B là tính đc AB vs Ac r còn đâu

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC 

=>HB*HC=4

BH+CH=5

=>BH=5-CH

HB*HC=4

=>HC(5-CH)=4

=>5HC-HC^2-4=0

=>HC^2-5HC+4=0

=>HC=1cm hoặc HC=4cm

TH1: HC=1cm

=>HB=4cm

\(AB=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right);AC=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\)

TH2: HC=4cm

=>HB=1cm

\(AB=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right);AC=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\)