Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\tan B=\sqrt{3}\Rightarrow\widehat{B}=60^0\)
\(sinB=\frac{AC}{BC}\Rightarrow AC=sinB.BC=sin60.BC=\frac{\sqrt{3}}{2}.2=\sqrt{3}\approx1,73cm\)
\(cosB=\frac{AB}{BC}\Rightarrow AB=cos60.BC=\frac{1}{2}.2=1cm\)
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>HB*HC=4
BH+CH=5
=>BH=5-CH
HB*HC=4
=>HC(5-CH)=4
=>5HC-HC^2-4=0
=>HC^2-5HC+4=0
=>HC=1cm hoặc HC=4cm
TH1: HC=1cm
=>HB=4cm
\(AB=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right);AC=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\)
TH2: HC=4cm
=>HB=1cm
\(AB=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right);AC=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\)
Tính đc tan B suy ra tính đc B. Tính đc B là tính đc AB vs Ac r còn đâu