K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔABH\(\sim\)ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

20 tháng 4 2021

Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))

13 tháng 4 2019

a. Xét  AFC và  AEB có:

\(\widehat{BAC}\) chung

\(\widehat{AFC}=\widehat{AEB}=90^0\)

 AFC đồng dạng với  AEB(g.g)

⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)

 \(AB.AF=AE.AC\)

\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)

Xét  AEF và  ABC có :

\(\widehat{BAC}\) chung

\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)

 AEF đồng dạng với  ABC (c.g.c)

Mấy câu kia bạn tự làm nốt đi nhá.

6 tháng 5 2023

loading...  

a) Xét hai tam giác vuông: ∆AHB và ∆CHA có:

∠B = ∠CAH (cùng phụ C)

⇒ ∆AHB ∽ ∆CHA (g-g)

⇒ AH/HC = HB/AH

⇒ AH.AH = HB.HC

⇒ AH² = HB.HC

Xét hai tam giác vuông: ∆ABC và ∆HAC có:

∠C chung

⇒ ∆ABC ∽ ∆HAC (g-g)

⇒ AC/HC = BC/AC

⇒ AC.AC = HC.BC

b) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 3² + 4²

= 25

⇒ BC = 5 (cm)

Do AD là tia phân giác của ∠BAC

⇒ BD/CD = AB/AC

⇒ AB/BD = AC/CD 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

AB/BD = AC/CD = (AB + AC)/(BD + CD) = (3 + 4)/5 = 7/5

Do AB/BD = 7/5

⇒ BD = AB.5/7 = 3.5/7 = 15/7 (cm)

4 tháng 2 2016

a) ta có BD là pg => DA/DC=AB/AC=15/10=3/2

=> DA/3=DC/2=DA+DC/3+2=AC/5=15/5=3

=> DA=3.3=9 cm

DC=3.2=6 cm

b) ta có BE là pg ngoài=> EA/EC=AB/BC=15/10=3/2

=> EA/3=EC/2=EA-EC/3-2=AC/1=15/1=15

=> EC=15.2=30cm