Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, AH là đường cao của tam giác ABC (gt)
Tam giác ABC vuông cân tại A (gt)
=> AH đồng thời là đường phân giác của tam giác ABC (đl)
=> góc HAB = 1/2 góc BAC (đl)
mà góc BAC = 90 do tam giác ABC vuông cân tại A (gt)
=> góc HAB = 90 : 2 = 45 (1)
HE là phân giác của góc CHA (gt)
=> góc EHA = 1/2 góc CHA (Đl)
mà góc CHA = 90 do AH là đường cao (gt)
=> góc EHA = 90 : 2 = 45 (2)
(1)(2) => góc EHA = góc HAB = 45 mà 2 góc này sole trong
=> EH // AD (đl)
xét tứ giác ADHE
=> ADHE là hình thang
b, chứng minh đường trung bình
A B C
Vì tam giác ABC cân có AH là đường cao
nên AH đồng thời là đường phân giác
\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)
Ta có \(AH\perp BC\)
Mà HD và HE lần lượt là các đường phân giác
nêngócAHD=AHE
Suy ra tam giác AHD=AHE ( góc cạnh góc) ( bạn tự chứng minh)
nên AD=AE
Chứng minh AE=EH( tự chứng minh)
Mà HE=HD do tam giác AHD VÀ tam giác AHE bằng nhau
nên AE=EH=DH=AD
Vậy AEDH là hình thoi
b) Chứng minh AE=EC
AD=DB
Aps dụng tính chất đường trung bình suy ra dpcm
a) Tứ giác ADHE là hình chữ nhật vì có 3 góc vuông \(\widehat{A}\)= \(\widehat{D}\)=\(\widehat{E}\)= 900
b) Tứ giác ADHE là hình chữ nhật nên DE = AH
Ap dụng định lý Pytago vào tam giác vuông ABH ta có:
AH2 + BH2 = AB2
\(\Rightarrow\)AH2 = AB2 - BH2
\(\Rightarrow\)AH2 = 102 - 62 = 64
\(\Rightarrow\)AH = \(\sqrt{64}\)= 8
Vì AH = DE nên DE = 8cm
xét tam giác KHI có HD là phân giác trong, ta được : DI/DK=IH/KH (1)
Cũng tam giác KHI có HE là phân giác ngoài do đó: EI/EK=IH/HK(2)
1 và 2 suy ra DI/DK=EI/EK
suy ra điều phải chứng minh thôi bạn
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
nen AH=DE
c: Để ADHE là hình vuông thì AH là phân giác của góc DAE
=>ΔABC cân tại A
=>AB=AC
Mk sửa rồi đấy