K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019
bạn ơi đề sai ak
19 tháng 9 2019

Mk sửa rồi đấy

20 tháng 11 2017

A B C

Vì tam giác ABC cân có AH là đường cao

nên AH đồng thời là đường phân giác

\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)

Ta có \(AH\perp BC\)

Mà HD và HE lần lượt là các đường phân giác 

nêngócAHD=AHE

Suy ra tam giác AHD=AHE ( góc cạnh góc) ( bạn tự chứng minh)

nên AD=AE

Chứng minh AE=EH( tự chứng minh)

Mà HE=HD do tam giác AHD VÀ tam giác AHE bằng nhau

nên AE=EH=DH=AD

Vậy AEDH là hình thoi

b) Chứng minh AE=EC

                         AD=DB

Aps dụng tính chất đường trung bình suy ra dpcm

19 tháng 9 2019

a, AH là đường cao của tam giác ABC (gt) 

Tam giác ABC vuông cân tại A (gt)

=> AH đồng thời là đường phân giác của tam giác ABC (đl)

=> góc HAB = 1/2 góc BAC (đl)

mà góc BAC = 90 do tam giác ABC vuông cân tại A (gt)

=> góc HAB = 90 : 2 = 45      (1)

HE là phân giác của góc CHA (gt)

=> góc EHA = 1/2 góc CHA (Đl)

mà góc CHA = 90 do AH là đường cao (gt)

=> góc EHA = 90 : 2 = 45    (2)

(1)(2) => góc EHA = góc HAB = 45 mà 2 góc này sole trong

=> EH // AD (đl) 

xét tứ giác ADHE 

=> ADHE là hình thang

b, chứng minh đường trung bình

16 tháng 10 2019

a, EH _|_ AC (gt)

AB _|_ AC do tam giác ABC vuông tại A (gt)

HE _|_ AB (gt)

=> góc HFA = góc BAC = góc HEA = 90 

=> FHEA là hình chữ nhật (dh)

12 tháng 12 2023

chịu :))
 

22 tháng 11 2017

a)  Tứ giác ADHE là hình chữ nhật vì có 3 góc vuông \(\widehat{A}\)\(\widehat{D}\)=\(\widehat{E}\)= 900

b)  Tứ giác ADHE là hình chữ nhật nên DE = AH

Ap dụng định lý Pytago vào tam giác vuông ABH ta có:

            AH2 + BH2 = AB2 

\(\Rightarrow\)AH2 = AB2 - BH2

\(\Rightarrow\)AH2 = 102 - 62 = 64

\(\Rightarrow\)AH = \(\sqrt{64}\)= 8

Vì AH = DE nên DE = 8cm

19 tháng 2 2020

lên gg mà tìm

5 tháng 1 2018

Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi D là điểm đối xứng của A với H, đường thẳng kẻ qua D song song với AB cắt BC và CA lần lượt ở M và N

CMR: 

a.Tứ giác ABDM là hình thoi
b.AM vg góc CD

c.gọi i là trung điểm MC. cmr : HNI = 90

a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

c:

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

 \(AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\)

=>DE=7,2cm