Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c có khá nhiều cách giải,nhưng mình trình bày 1 cách thôi nhá :)
Câu c là lấy H đối xừng với B qua M,Kẻ đường thẳng song song với AE vắt EM,AF lần lượt tại V và W ạ
M N P Q A F E 1 1 1 1 2 3 1 2 3 1 2 1 2 2 3
MEAF là HCN vì M1=F1=E1=90 độ
b.QMN cân tại M ( -> Góc FQA=Góc N1)
Có QFA=AEN=90 ĐỘ
-> T/G QFA đồng dạng vs NEA -> A3=N1=FQA-> T/G QFA vuông cân tại F -> FQ=FA=ME
-Xét 2 tam giác PQF=QME(C.G.C)
-> QE=PF( 2 cạnh tương ứng ) -> P1=Q1 ( góc tương ưng )
có F3+P1=90 ĐỘ ( tam giác vuông ) mà P1=Q1 -> F3+Q1=90 ĐỘ -> QE vuông góc vs PF
c.Có FA+AE=ME+EN=MN( không đổi =>FA.AE lớn nhất khi FA=AE => MEAF là hình vuông khi A trùng vs giao điểm 2 đường chéo của hình vuông MNPQ
Diện tích hình vuông MEAF là FA.AE
A B C D H M
a, \(AEMF\)là hình chữ nhật nên \(AE=FM\)
\(DFM\)vuông cân tại \(F\)suy ra \(FM=DF\)
\(\Rightarrow AE=DF\)suy ra \(\Delta ADE=\Delta DCF\)
\(\Rightarrow DE=CF\)
b, Tương tự câu a, dễ thấy \(AF=BE\)
\(\Rightarrow\Delta ABF=\Delta BCE\)
\(\Rightarrow\widehat{ABF}=\widehat{BCE}\) nên \(BF\)vuông góc \(CE\)
Gọi \(H\)là giao điểm của \(BF\)và \(DE\)
\(\Rightarrow H\)là trực tâm của tam giác \(CEF\)
Gọi \(N\)là giao điểm của \(BC\)và \(MF\)
\(CN=DF=AE\)và \(MN=EM=AF\)
\(\Delta AEF=\Delta CMN\)
\(\Rightarrow\widehat{AEF}=\widehat{MCN}\)
\(\Rightarrow CM\perp EF\)
\(\Rightarrow\)Ba đường thẳng DE,BF,CM đồng quy tại H
c, \(AE+EM=AE+EB=AB\)không đổi
\(\left(AE-EM\right)^2\ge0\Rightarrow AE^2+AM^2\ge2AE.AM\)
\(\Rightarrow\left(AE+AM\right)^2\ge4AE.AM\Rightarrow\left(\frac{AE+EM}{2}\right)^2=\frac{AB^2}{4}\ge AE.AM=S_{AEMF}\)
Vậy \(S_{AEMF}max\)khi \(AE=EM\)( M là giao AC và và BD )
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
cô Quản Lý Hoàng Thị Thu Huyền ơi cô bảo tham khảo ở đâu thế ạ ? sao em ko thấy đường link hay bài đăng j vậy