K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

Câu hỏi của duyvodich10 - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

a) Hai tam giác vuông ABH và ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra ˆIAKIAK^=ˆIAHIAH^

Vậy AI là tia phân giác của góc A.

20 tháng 4 2017

a) Hai tam giác vuông ABH và ACH có:

Tam giác ABC cân tại A ⇒ AB = AC

AH cạnh chung.

Nên ∆ABH = ∆ACH(Cạnh huyền – cạnh góc vuông)

Suy ra HB = HC

b)∆ABH = ∆ACH (Câu a)

Suy ra ∠BAH = ∠CAH (Hai góc tương ứng)

a) Chứng minh ΔBHC=ΔCKB

Xét ΔBHC vuông tại H và ΔCKB vuông tại K có

BC là cạnh chung

\(\widehat{HCB}=\widehat{KBC}\)(\(\widehat{ACB}=\widehat{ABC}\), H∈AC, K∈AB)

Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)

b)

*Chứng minh IB=IC

Ta có: ΔBHC=ΔCKB(cmt)

\(\widehat{HBC}=\widehat{KCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(định lí đảo của tam giác cân)

⇒IB=IC(đpcm)

*Chứng minh \(\widehat{IBK}=\widehat{ICH}\)

Ta có: \(\widehat{ABH}+\widehat{HBC}=\widehat{ABC}\)(tia BH nằm giữa hai tia BA,BC)

\(\widehat{ACK}+\widehat{BCK}=\widehat{ACB}\)(tia CK nằm giữa hai tia CA,CB)

\(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

\(\widehat{HBC}=\widehat{KCB}\)(cmt)

nên \(\widehat{ABH}=\widehat{ACK}\)

hay \(\widehat{IBK}=\widehat{ICH}\)(đpcm)

c) Chứng minh KH//BC

Ta có: ΔBKC=ΔBHC(cmt)

⇒KB=HC(hai cạnh tương ứng)

Ta có: AK+KB=AB(A,K,B thẳng hàng)

AH+HC=AC(do A,H,C thẳng hàng)

mà AB=AC(ΔABC cân tại A)

và KB=HC(cmt)

nên AK=AH

Xét ΔAKH có AK=AH(cmt)

nên ΔAKH cân tại A(định nghĩa tam giác cân)

\(\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAKH cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

\(\widehat{AKH}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên KH//BC(dấu hiệu nhận biết hai đường thẳng song song)

12 tháng 3 2020


A B C H K I a.Do △ABC cân ⇒∠ABC=∠ACB

Xét △BHC= △CKB (cạnh huyền-góc nhọn)

⇒∠IBC=∠ICB (2 góc tương ứng)

b. Do ∠IBC =∠ICB (câu a)

⇒△IBC cân ⇒ IB=IC

Xét △IBK=△ICH (cạnh huyền-góc nhọn)

⇒∠IBK=∠ICH (2 góc tương ứng)

c. Do △BHC=△CKB (câu a)

⇒ BH=CK (2 cạnh tương ứng)

⇒HC=KB ( 2 cạnh tương ứng)

Xét △BHK=△CKH(c.c.c)

⇒ ∠BHK=∠CKH (2 góc tương ứng)

Xét △IKH có: ∠2IHK=1800 -∠ KIH

Xét △IBC có : ∠2IBC=1800 -∠ ICB -∠BIC

Mà ∠BIC=∠KIH (2góc đối đỉnh)

⇒∠2IBC=1800-∠KIH

⇒∠IBC=∠IHK

Mà ∠IBC và ∠IHK là 2 góc so le trong

⇒KH // BC

Còn câu d thì hình như bị thiếu dữ kiện nên mik chưa làm

Chúc bn hok tốt

19 tháng 5 2017

Xét tam giác AKC và tam giác AHB có :

Góc A chung

AC = AB (tam giác ABC đều) 

=> Tam giác AKC = Tam giác AHB

=> AK = AH

Ta có :

BH là đường cao của AC

CK là đường cao của AB 

Mà 2 đường cắt nhau tại I

=> AI cũng là đường cao của BC

Mặt khác , tam giác ABC cân tại A

=> AI là đường cao và cũng là đường phân giác

19 tháng 5 2017

Xét tam giác AHB và AKC có :

Góc h = k = 90 độ

ab = ac ( tam giac abc cân )

chung góc  a

=> tam giác AHB = AKC ( ch - gnh )

=>  ah = ak ( 2 cạnh tương ứng ) 

Xét tam giác aki và ahi có : 

k = h ( = 90 độ )

ah = ak

ai chung 

=> tam giác aki = ahi ( ch - cgv )

=> góc kai = hai 

=> ai la phan giac

27 tháng 1 2021

Sai đề rồi phải là kẻ \(AH\perp BC\left(H\in BC\right)\) nhé!

A B C H E F

a) Xét 2 Δ vuông: Δ AHB = Δ AHC (c.h-g.n) vì:

\(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{ACB}=\widehat{ABC}\left(gt\right)\end{cases}}\)

=> \(BH=HC\)

b) Xét 2 Δ vuông: Δ BHF = Δ CHE (c.h-g.n) vì:

\(\hept{\begin{cases}HB=HC\left(p.a\right)\\\widehat{HBF}=\widehat{HCE}\left(gt\right)\end{cases}}\)

=> \(HE=HF\) => Tam giác HEF cân tại H