K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2021

Sai đề rồi phải là kẻ \(AH\perp BC\left(H\in BC\right)\) nhé!

A B C H E F

a) Xét 2 Δ vuông: Δ AHB = Δ AHC (c.h-g.n) vì:

\(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{ACB}=\widehat{ABC}\left(gt\right)\end{cases}}\)

=> \(BH=HC\)

b) Xét 2 Δ vuông: Δ BHF = Δ CHE (c.h-g.n) vì:

\(\hept{\begin{cases}HB=HC\left(p.a\right)\\\widehat{HBF}=\widehat{HCE}\left(gt\right)\end{cases}}\)

=> \(HE=HF\) => Tam giác HEF cân tại H

25 tháng 4 2018

a)       Xét tam giác BAH và tam giác CAH, có:

                               AH: cạnh chung

                               AB = AC ( tam giác ABC cân tại A )

                               góc AHB = góc AHC ( = 90 độ )

                           -> tam giác BAH = tam giác CAH ( ch-cgv )

                           -> HB = HC ( 2 cạnh tương ứng )

b)       Xét tam giác FBH  và tam giác ECH, có:

                               HB = HC ( cmt )

                               góc D = góc E ( = 90 độ )

                               góc B = góc C ( tam giác ABC cân tại A )

                           -> tam giác FBH = tam giác ECH ( ch-gn )

                           -> HF = HE ( 2 cạnh tương ứng )

                           -> tam giác HEF là tam giác cân tại H

 k cho mình nha mỏi tay quá !!! thanks

25 tháng 4 2018

k cho mình nha !!!

a) Hai tam giác vuông ABH và ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra ˆIAKIAK^=ˆIAHIAH^

Vậy AI là tia phân giác của góc A.

20 tháng 4 2017

a) Hai tam giác vuông ABH và ACH có:

Tam giác ABC cân tại A ⇒ AB = AC

AH cạnh chung.

Nên ∆ABH = ∆ACH(Cạnh huyền – cạnh góc vuông)

Suy ra HB = HC

b)∆ABH = ∆ACH (Câu a)

Suy ra ∠BAH = ∠CAH (Hai góc tương ứng)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

a: Xét ΔACE vuông tạiC và ΔAKE vuông tại K có

AE chung

góc CAE=góc KAE

Do đó: ΔACE=ΔAKE

Suy ra: AC=AK và EC=EK

=>AE là đường trung trực của CK

hay AE\(\perp\)CK

b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)

nên ΔEAB cân tại E

mà EK là đường cao

nên K là trung điểm của AB

c: AC=AK=KB 

mà EB>KB

nên EB>AC

17 tháng 2 2019

\(MH\perp AB\left(gt\right)\Rightarrow\widehat{MHA}=\widehat{MHB}=90^0\)

\(MK\perp AC\left(gt\right)\Rightarrow\widehat{MKA}=\widehat{MKC}=90^0\)

M là trung điểm của BC (gt) nên MB = MC

AM là tia phân giác của góc A (gt) \(\Rightarrow\widehat{BAM}=\widehat{CAM}\Rightarrow\widehat{HAM}=\widehat{KAM}\)

\(\Delta AHM=\Delta AKM\left(ch-gn\right)\Rightarrow HM=KM\) (2 cạnh tương ứng)

\(\Delta HMB=\Delta KMC\left(ch-cgv\right)\Rightarrow\widehat{B}=\widehat{C}\) ( 2 góc t/ứ)