Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)
nên AMHN là tứ giác nội tiếp
2: Ta có: \(\widehat{MNH}=\widehat{BAI}\)
\(\widehat{INH}=\widehat{MCB}\)
mà \(\widehat{BAI}=\widehat{MCB}\)
nên \(\widehat{MNH}=\widehat{INH}\)
hay NH là phân giác của góc MNI
Ta có: \(\widehat{NMH}=\widehat{CAI}\)
\(\widehat{IMH}=\widehat{NCB}\)
mà \(\widehat{CAI}=\widehat{NCB}\)
nên \(\widehat{NMH}=\widehat{IMH}\)
hay MH là tia phân giác của góc NMI
Xét ΔMNI có
MH là phân giác
NH là phân giác
Do đó: H là tâm đường tròn nội tiếp ΔMNI
=>H cách đều NM và MI
a) Do AB // DE nên \(\widebat{AE}=\widebat{BD}\Rightarrow\widebat{AE}+\widebat{DC}=\widebat{BD}+\widebat{DC}=\widebat{BC}\)
Ta có \(\widehat{MIC}\) là góc có đỉnh nằm trong đường tròn nên \(\widehat{MIC}=\frac{\widebat{AE}+\widebat{DC}}{2}=\frac{\widebat{BC}}{2}\)
Góc \(\widehat{MBC}\) là góc tạo bởi tiếp tuyến và dây cung nên \(\widehat{MBC}=\frac{\widebat{BC}}{2}\)
Suy ra \(\widehat{MIC}=\widehat{MBC}\)
Xét tứ giác BMCI có \(\widehat{MIC}=\widehat{MBC}\) nên BMCI là tứ giác nội tiếp.
b) Ta có \(\widehat{MIC}=\widehat{MBC}\Rightarrow\Delta FIC\sim\Delta FBM\left(g-g\right)\)
\(\Rightarrow\frac{FI}{FB}=\frac{FC}{FM}\Rightarrow FI.FM=FB.FC\)
Ta cũng có \(\widehat{DBF}=\widehat{CEF}\Rightarrow\Delta BFD\sim\Delta EFC\left(g-g\right)\)
\(\Rightarrow\frac{FB}{FE}=\frac{FD}{FC}\Rightarrow FE.FD=FB.FC\)
Vậy nên \(FI.FM=FE.FD\)
c) Do PQ là đường kính nên \(\widehat{PTQ}=90^o\)
Suy ra \(\Delta FIQ\sim\Delta FTM\left(c-g-c\right)\Rightarrow\widehat{FTM}=\widehat{FIQ}\)
Lại có BIMC nội tiếp, BOCM cũng nội tiếp nên 5 điểm B, O, I, C, M cùng thuộc đường trong đường kính OM.
Suy ra \(\widehat{FIQ}=90^o\)
Vậy thì P, T, M thẳng hàng.
d) Ta thấy \(S_{IBC}=\frac{1}{2}BC.d\left(I,BC\right)\)
Do BC không đổi nên SIBC lớn nhất khi d(I; BC) lớn nhất.
Điều này xảy ra khi I trùng O hay tam giác ABC vuông tại B.
Vậy diện tích tam giác IBC lớn nhất khi AC là đường kính đường tròn (O).
A B C K D E F O I M
Ta giải như sau :
a) 1. Góc ACF + Góc BAC = 90 độ ; Góc EBA + BAC = 90 độ => Góc ACF = Góc EBA (cùng phu với Góc BAC)
Mà ACF và EBA là hai góc chắn cung EF của tứ giác EFBC và bằng nhau
=> Tứ giác EFBC nội tiếp.
2. Ta có : BE vuông góc với AC tại E ; CK vuông góc với AC tại C (Vì góc ACK chắn nửa cung tròn đường kính AK)
=> BE // CK (1)
Tương tự ta cũng có : BK // CF (2)
Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (dhnb)
b) Vì tứ giác BHCK là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Mà M là trung điểm của BC => M cũng là trung điểm HK
Xét tam giác AHK có AM và HO lần lượt là hai đường trung tuyến ( AO = OK ; HM = MK) cắt nhau tại I
=> I là trọng tâm tam giác AHK
Lại có AM là đường trung tuyến tam giác ABC và I thuộc AM => I là trọng tâm tam giác ABC
c) Mình chưa nghĩ ra :))
giải như sau :
a) 1. Góc ACF + Góc BAC = 90 độ ; Góc EBA + BAC = 90 độ => Góc ACF = Góc EBA (cùng phu với Góc BAC)
Mà ACF và EBA là hai góc chắn cung EF của tứ giác EFBC và bằng nhau
=> Tứ giác EFBC nội tiếp.
2. Ta có : BE vuông góc với AC tại E ; CK vuông góc với AC tại C (Vì góc ACK chắn nửa cung tròn đường kính AK)
=> BE // CK (1)
Tương tự ta cũng có : BK // CF (2)
Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (dhnb)
b) Vì tứ giác BHCK là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Mà M là trung điểm của BC => M cũng là trung điểm HK
Xét tam giác AHK có AM và HO lần lượt là hai đường trung tuyến ( AO = OK ; HM = MK) cắt nhau tại I
=> I là trọng tâm tam giác AHK
Lại có AM là đường trung tuyến tam giác ABC và I thuộc AM => I là trọng tâm tam giác ABC