Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K đối xứng với F qua M.
Tứ giác FBKC là hình bình hành\(\Rightarrow FC//BK\)
\(\Rightarrow\widehat{BKM}=\widehat{MEB};\widehat{BKM}=\widehat{MFA}\).Mà \(\widehat{AEM}=\widehat{MFA}\Rightarrow\widehat{BKM}=\widehat{MEB}\Rightarrow\)Tứ giác BMKE nội tiếp
\(\Rightarrow\widehat{BEK}=\widehat{DAE};\widehat{BEK}=\widehat{FMD}=\widehat{FAD}=\widehat{DAE}\)
\(\Rightarrow\widehat{BEK}=\widehat{DAE}\Rightarrow AD//EK\)
Do N là trung điểm của EF, M là trung điểm của FK \(\Rightarrow MN//EK\)
\(\Rightarrow MN//AD\left(đpcm\right)\)
A B C M D N E F G x y
Lấy điểm G đối xứng với E qua M. Khi đó, MN là đường tron bình của \(\Delta\)EFG => MN // FG (1)
Xét (O) có 2 cát tuyến CFA và CMD => \(\frac{CA}{CD}=\frac{CM}{CF}\) (Do \(\Delta\)CMF ~ \(\Delta\)CAD)
Áp dụng ĐL đường phân giác trong tam giác ta có: \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{CA}{CD}=\frac{AB}{BD}\)
Suy ra: \(\frac{CM}{CF}=\frac{AB}{BD}=\frac{BM}{BE}\) (Vì \(\Delta\)ABD ~ \(\Delta\)MBE). Mà CM=BM nên BE = CF
Dễ thấy: Tứ giác BECG là hình bình hành => BE = CG và BE//CG. Do đó: CF = CG => \(\Delta\)GFC cân tại C
=> ^CFG = (1800 - ^GCF)/2 = (1800 - ^BAC)/2 (Vì BE//CG) = ^DAx = ^CAy => FG // AD (2 góc đồng vị bằng nhau) (2)
Từ (1) và (2) => MN // AD (đpcm).
P/S: Đường tròn (ADM) không cắt tia đối tia AC cũng được nhé bn. Trong trường hợp nó cắt tia đối thì c/m tương tự.
Xét tứ giác MNCD , ta có:
góc ACB =90 (góc nội tiếp chắn nửa đường tròn) => NCD =90
góc MBA =90 (góc nội tiếp chắn nửa đường tròn) => NMD =90
=> NCD + NMD =180
=> đpcm
2. Xét tg MDA và tg CDB
góc CBM = góc CAM (cùng chắn cung MC)
góc ACB =góc BMA = 90
=>2tg đồng dạng => đpcm
3. Xét tam giác ABN, ta có:
AC và MB là đường cao và cắt nhau tại D.
=> DN là đường cao thứ 3 => DN | AB (1)
Lại có: góc BID nằm trên đtròn đk DB => góc BID =90 => DI | IB (2)
Từ (1)(2) => đpcm
cho tam giác ABC ( AB<AC) có ba góc nhọc nội tiếp đường tròn tâm (O) và D là hình chiếu của B trên AO sao cho D nằm giữa A và O. gọi M là trung điểm của BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với (O), H là giao điểm của BF và AD.
1/ chứng minh tứ giác BDOM nội tiếp và góc MOD + NAE=180.
2/ chứng minh DF //CE.
3/ chứng minh CA là tia phân giác của góc BCE
4/ Chứng minh HN vuông góc với AB