Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K đối xứng với F qua M.
Tứ giác FBKC là hình bình hành\(\Rightarrow FC//BK\)
\(\Rightarrow\widehat{BKM}=\widehat{MEB};\widehat{BKM}=\widehat{MFA}\).Mà \(\widehat{AEM}=\widehat{MFA}\Rightarrow\widehat{BKM}=\widehat{MEB}\Rightarrow\)Tứ giác BMKE nội tiếp
\(\Rightarrow\widehat{BEK}=\widehat{DAE};\widehat{BEK}=\widehat{FMD}=\widehat{FAD}=\widehat{DAE}\)
\(\Rightarrow\widehat{BEK}=\widehat{DAE}\Rightarrow AD//EK\)
Do N là trung điểm của EF, M là trung điểm của FK \(\Rightarrow MN//EK\)
\(\Rightarrow MN//AD\left(đpcm\right)\)
Từng bài 1 thôi bạn!
A B C J O N K H M
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
A B C M D N E F G x y
Lấy điểm G đối xứng với E qua M. Khi đó, MN là đường tron bình của \(\Delta\)EFG => MN // FG (1)
Xét (O) có 2 cát tuyến CFA và CMD => \(\frac{CA}{CD}=\frac{CM}{CF}\) (Do \(\Delta\)CMF ~ \(\Delta\)CAD)
Áp dụng ĐL đường phân giác trong tam giác ta có: \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{CA}{CD}=\frac{AB}{BD}\)
Suy ra: \(\frac{CM}{CF}=\frac{AB}{BD}=\frac{BM}{BE}\) (Vì \(\Delta\)ABD ~ \(\Delta\)MBE). Mà CM=BM nên BE = CF
Dễ thấy: Tứ giác BECG là hình bình hành => BE = CG và BE//CG. Do đó: CF = CG => \(\Delta\)GFC cân tại C
=> ^CFG = (1800 - ^GCF)/2 = (1800 - ^BAC)/2 (Vì BE//CG) = ^DAx = ^CAy => FG // AD (2 góc đồng vị bằng nhau) (2)
Từ (1) và (2) => MN // AD (đpcm).
P/S: Đường tròn (ADM) không cắt tia đối tia AC cũng được nhé bn. Trong trường hợp nó cắt tia đối thì c/m tương tự.