Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//DC
b: Xét ΔKMB và ΔFMC có
góc MBK=góc MCK
MB=MC
góc KMB=góc FMC
=>ΔKMB=ΔFMC
=>MK=MF
=>M là trung điểm của KF
Bài 2
Bài làm
a) Xét tam giác ABM và tam giác DCM có:
BM = MC ( Do M là trung điểm BC )
^AMB = ^DMC ( hai góc đối )
MD = MA ( gt )
=> Tam giác ABM = tam giác DCM ( c.g.c )
b) Xét tam giác BHA và tam giác BHE có:
HE = HA ( Do H là trung điểm AE )
^BHA = ^BHE ( = 90o )
BH chung
=> Tam giác BHA = tam giác BHE ( c.g.c )
=> AB = BE
Mà tam giác ABM = tam giác DCM ( cmt )
=> AB = CD
=> BE = CD ( đpcm )
Bài 3
Bài làm
a) Xét tam giác ABD và tam giác ACD có:
AB = AB ( gt )
BD = DC ( Do M là trung điểm BC )
AD chung
=> Tam giác ABD = tam giác ACD ( c.c.c )
b) Xét tam giác BEC và tam giác MEA có:
AE = EC ( Do E kà trung điểm AC )
^BEC = ^MEA ( hai góc đối )
BE = EM ( gt )
=> Tam giác BEC = tam giác MEA ( c.g.c )
=> BC = AM
Mà BD = 1/2 . BC ( Do D là trung điểm BC )
hay BD = 1/2 . AM
Hay AM = 2.BD ( đpcm )
c) Vì tam giác ABD = tam giác ACD ( cmt )
=> ^ADB = ^ADC ( hai góc tương ứng )
Mà ^ADB + ^ADC = 180o ( hai góc kề bù )
=> ^ADB = ^ADC = 180o/2 = 90o
=> AD vuông góc với BC (1)
Vì tam giác BEC = tam giác MEA ( cmt )
=> ^EBC = ^EMA ( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong
=> AM // BC (2)
Từ (1) và (2) => AM vuông góc với AD
=> ^MAD = 90o
# Học tốt #
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
Xét tam giác AMB và tam giác DMC có:AM=MD(GT)
góc AMB=góc DMC(Đối đỉnh)
BM=MC(GT)
=>tam giác AMB=tam giác DMC(c.g.c)
Mình làm câu đầu tiên nhé :)
a) Xét tam giác ABM và tam giác DMC có :
BM = CM ( gt )
\(\widehat{AMB}=\widehat{DMC}\)
AM = DM ( gt )
\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )
Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD
bạn tự vẽ hình nha
áp dụng địng lí py ta go vào tam giác ABC vuông ở A
=> \(BC^2=AB^2+AC^2\)
=\(6^2+8^2\)
=36+64
=100
=> BC=10cm
a) ta có định lí: trong 1 tam giác vuông đường trung tuyến ứng với cạnh huyền thì = nửa cạnh huyền
=> AM=\(\frac{BC}{2}\)=\(\frac{10}{2}\)=5 cm
b)xét 2 tam giác AMB và DMC có:
AM =MD(gt)
BM=CM(AM là trung tuyến)
góc AMB=góc DMC(đối đỉnh)
=> 2 tam giác AMB=DMC(c.g.c)
c)
cì AM =\(\frac{BC}{2}=BM=CM\)
mà AM =DM(gt)
=> AM+DM=BM+CM hay AD=BC
2 tam giác ABM=DMC(theo b)
=> AB=DC(2 cạnh tương ứng)
xét 2 tam giác ABC và CDA có:
AB =DC(chứng minh trên )
AD =BC(chứng minh trên)
cạnh AC chung
=> 2 tam giác ABC =CDA(c.c.c)
=> 2góc BAC=DCA=90độ(2 góc tương ứng)
hay AC vuông góc với DC
Xét ΔDCM và ΔABM có:
AM = MD ( GT )
BM = BC (AM là đường trung tuyến của ΔABC tại đỉnh A)
góc BMA = góc DMC ( hai góc đối đỉnh)
=> ΔDMC = Δ ABM (c.g.c)
=> Góc BAM = Góc MDC ( hai góc tương ứng)
mà Góc BAM và Góc MDC nằm ở vị trí so le trong
=> AB\\CD
b) xét ΔAKM và Δ DFM có
góc KMA = góc DMF ( 2 góc đối đỉnh)
góc BAM = góc MDC (cmt)
AM = MD ( GT )
=> ΔAKM = ΔDFM (g.c.g)
=> MK = MF ( 2 cạnh tương ứng)
=> M là trung điểm của KF
Học tốt