K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(AB=\sqrt{AH^2+HB^2}=\sqrt{20+16}=6\left(cm\right)\)

\(AC=\sqrt{AH^2+HC^2}=3\sqrt{5}\)

Vì AB^2+AC^2=BC^2

nên ΔABC vuông tại A

=>tâm là trung điểm của BC

Bán kính là BC/2=4,5cm

2:Gọi Llà trung điểm của HK

Xét (L) có

HK là đường kính

nên H thuộc (L)

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

HB/HA=HA/HC

=>ΔHBA đồng dạng với ΔHAC

=>góc HBA=góc HAC

=>góc HBA+góc HCA=90 độ

=>góc BAC=90 độ

=>ΔBAC nội tiếp đường tròn đường kính BC

Tâm là trung điểm của BC

Bán kính là R=BC/2=4,5

b: Gọi giao của HI với AB là M, HK với AC là N

H đối xứng I qua AB

=>HI vuông góc AB tại M

H đối xứng K qua AC

=>HK vuông góc AC tại N

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

=>góc MHN=90 độ

=>góc IHK=90 độ

 

5 tháng 8 2023

 Ta nhận thấy \(AH^2=\left(2\sqrt{5}\right)^2=20\) và \(BH.CH=4.5=20\) và \(AH\perp BC\) tại H nên tam giác ABC sẽ là tam giác vuông tại A. chỉ cần làm như sau:

 Vẽ đường thẳng d bất kì. Trên đó lấy 3 điểm B, C, H sao cho H nằm giữa B và C thỏa mãn \(BH=4cm,CH=5cm\)

 

Sau đó, ta chỉ cần dựng đường thẳng qua H vuông góc với BC cắt đường tròn đường kính BC tại A là xong.

Sau đó ta xóa đi các chi tiết thừa và được hình vẽ đúng theo ycbt.

5 tháng 8 2023

Lê Song Phương, em ơi, em vẽ hình đẹp quá, thế điểm I; K đối xứng với H qua AB và AC của cô đâu rồi nhỉ? 

Bài này chỉ cần vẽ hình,nhưng cô tìm mãi vẫn chưa thấy I và K đâu em ha!

 

22 tháng 3 2021

a/ Ta có

\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)

=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB

b/ Ta có

\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)

\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)

\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)

Mà \(AH\perp BC\Rightarrow DF\perp BC\)

c/

Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.

Nối I với H, D với H 

Xét \(\Delta HDF\) và \(\Delta HEI\) ta có

\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)

\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)

Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)

\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)

\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\)  => tg HDF đồng dạng với tg HEI

\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

28 tháng 11 2023

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó;ΔBEC vuông tại E

=>CE\(\perp\)BE tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó;ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét tứ giác AEHD có \(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp đường tròn đường kính AH

=>A,E,H,D cùng nằm trên đường tròn đường kính AH

c: I là tâm của đường tròn đi qua 4 điểm A,E,H,D

=>I là trung điểm của AH

Gọi giao điểm của AH với BC là M

AH\(\perp\)BC

nên AH\(\perp\)BC tại M

\(\widehat{BHM}=\widehat{IHD}\)

mà \(\widehat{IHD}=\widehat{IDH}\)(ID=IH)

nên \(\widehat{BHM}=\widehat{IDH}\)

mà \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{HBM}\right)\)

nên \(\widehat{IDH}=\widehat{BCD}\)

OB=OD

=>ΔODB cân tại O

=>\(\widehat{OBD}=\widehat{ODB}\)

=>\(\widehat{ODH}=\widehat{DBC}\)

\(\widehat{IDO}=\widehat{IDH}+\widehat{ODH}\)

\(=\widehat{DBC}+\widehat{DCB}\)

\(=90^0\)

=>ID\(\perp\)DO