Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Sửa đề: HEDF là hình thang cân
Xét ΔABC có
F là trung điểm của AB
D là trung điểm của AC
Do đó: FD là đường trung bình của ΔABC
Suy ra: FD//BC
hay FD//HE
Ta có: ΔAHC vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AC
nên \(HD=\dfrac{AC}{2}\left(1\right)\)
Xét ΔABC có
F là trung điểm của AB
E là trung điểm của BC
Do đó: FE là đường trung bình của ΔABC
Suy ra: \(FE=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra FE=HD
Xét tứ giác FDEH có FD//HE
nên FDEH là hình thang
mà FE=HD
nên FDEH là hình thang cân
a: Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD
hay D nằm trên đường trung trực của AH(1)
ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên HE=AE
hay E nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra DE là đường trung trực của AH
hay A và H đối xứng nhau qua ED
hình mình vẽ tượng trưng thôi nha
đề của bạn 1 số chỗ hơi nhầm đó nha.
A B C H F E N M
a)
dựa theo công thức tính diện tích tam giác, ta có:
S\(\Delta\)ABC = \(\dfrac{1}{2}.12.16=96\left(cm^2\right)\)
ta có:
AN = NC ; AM = MB
=> MN là đường trung bình của tam giác ABC
do đó MN//= \(\dfrac{1}{2}\)BC
=> MN = 6 cm
b) ta có:
AM = MB ; HM = ME
=> AHBE là hình bình hành
Mà ta lại thấy góc AHB vuông
=> AHBE là hình chữ nhật
c) ta có:
AH= HF ; CH = HB
=> ABFC là hình bình hành
Mà ta thấy AF \(\perp\) CB
suy ra ABFC là hình thoi.
d) mk k hỉu cái đề cho lắm nên thôi nha.
chúc bạn học tốt
a: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=12\cdot8=96\left(cm^2\right)\)
Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=BC/2=6(cm)
b: Xét tứ giác AHBE có
M là trung điểm của AB
M là trung điểm của HE
Do đó:AHBE là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm của AF
H là trung điểm của BC
Do đó: ABFC là hình bình hành
mà AB=AC
nên ABFC là hình thoi