Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C D E H
a) Áp dụng hệ thức lượng vào 2 tam giác vuông: AHB và AHC ta có:
\(AH^2=AD.AB\)
\(AH^2=AE.AC\)
suy ra:\(AD.AB=AE.AC\)
b) \(AD.AB=AE.AC\)
=> \(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét tam giác AED và tam giác ABC có:
\(\widehat{A}\)chung
\(\frac{AD}{AC}=\frac{AE}{AB}\)(cmt)
suy ra: \(\Delta AED~\Delta ABC\)
1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)
nên ΔADE\(\sim\)ΔACB(c-g-c)
a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông
∆AHC và ∆AHB ta có:
AE.AC = A H 2 = AD.AB => ∆AHC ~ ∆AHB(c.g.c)
b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm
Trong ∆AHB vuông ta có:
tan A B C ^ = A H H B => A B C ^ ≈ 56 0 , S A D E = 27 13 c m 2
a) \(AH^2=BH.CH=3,6.6,4=23,04\)
\(\Rightarrow AH=4,8\left(cm\right)\)
\(AC^2=AH^2+HC^2=23,04+40,96=64\)
\(\Rightarrow AC=8\left(cm\right)\)
\(AB^2=AH^2+BH^2=23,04+12,96=36\)
\(\Rightarrow AB=6\left(cm\right)\)
\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)
\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)
\(\Rightarrow C=90^o-53^o=37^o\)
b) Xét Δ vuông ABH, có đường cao DH ta có :
\(AH^2=AD.AB\left(1\right)\)
Tương tự Δ vuông ACH :
\(AH^2=AE.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)
a,DoΔvuông AHC có:
AH2=AE.AC (1)
Δ vuông AHB có:
AH2=AD.AB (2)
Từ (1) và (2) :
AE.AC =AD.AB
b, Xest ΔAED và ΔABC có:
BAC^chung
AE.AC=AD.AB (câu a)
=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)
a) ΔABH vuông tại H có đường cao HD
=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)
ΔAHC vuông tại H có đường cao HE
=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)
Từ (1) và (2) => AD.AB = AE.AC (=AH2)
câu b) bn tự làm nhé
1: AH=căn 4*9=6cm
AB=căn 4*13=2căn 13(cm)
AC=căn 9*13=3*căn 13(cm)
2: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>DE=AH
=>DE^2=HB*HC
3: ΔAHB vuông tại H có HD vuông góc AB
nên AD*AB=AH^2
ΔAHC vuông tại H có HE vuông góc AC
nên AE*AC=AH^2
=>AD*AB=AE*AC
4: BD*BA+AE*AC
=AH^2+BH^2=AB^2
5: AD*AB=AE*AC
=>AD/AC=AE/AB
=>ΔADE đồng dạng với ΔACB
6: góc AED+góc MAC
=góc AHD+góc MCA
=góc ABC+góc ACB=90 độ
=>DE vuông góc AM
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b) Ta có: \(AD\cdot AB=AE\cdot AC\)(cmt)
nên \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE và ΔACB có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔADE\(\sim\)ΔACB(c-g-c)
Suy ra: \(\widehat{AED}=\widehat{ABC}\)(hai góc tương ứng)
2)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow DE^2=2\cdot4.5=9\)
hay DE=3(cm)
b) Xét ΔABH vuông tại H có
\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{3}{2}\)
nên \(\widehat{ABC}\simeq56^0\)