K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,DoΔvuông AHC có:

AH2=AE.AC (1)

Δ vuông AHB có:

AH2=AD.AB (2) 

Từ (1) và (2) :

AE.AC =AD.AB

b, Xest ΔAED và ΔABC có:

BAC^chung

AE.AC=AD.AB (câu a)

=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)

17 tháng 9 2021

a) ΔABH vuông tại H có đường cao HD

=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)

ΔAHC vuông tại H có đường cao HE

=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)

Từ (1) và (2) => AD.AB = AE.AC (=AH2)

câu b) bn tự làm nhé

1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)

nên ΔADE\(\sim\)ΔACB(c-g-c)

30 tháng 10 2021

vip đấy 

 

18 tháng 8 2018

B A C D E H

a)  Áp dụng hệ thức lượng vào 2 tam giác vuông: AHB và AHC ta có:

\(AH^2=AD.AB\)

\(AH^2=AE.AC\)

suy ra:\(AD.AB=AE.AC\)

b)  \(AD.AB=AE.AC\)

=>   \(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét tam giác AED và tam giác ABC có:

\(\widehat{A}\)chung

\(\frac{AD}{AC}=\frac{AE}{AB}\)(cmt)

suy ra: \(\Delta AED~\Delta ABC\)

13 tháng 1 2018

a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông

∆AHC và ∆AHB ta có:

AE.AC =  A H 2 = AD.AB => ∆AHC  ~ ∆AHB(c.g.c)

b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm

Trong ∆AHB vuông ta có:

tan A B C ^ = A H H B =>  A B C   ^ ≈ 56 0 , S A D E = 27 13 c m 2

 

 

 

21 tháng 10 2021

a, BC=BH+HC=8BC=BH+HC=8

Áp dụng HTL: 

⎧⎪⎨⎪⎩AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒⎧⎪ ⎪⎨⎪ ⎪⎩AB=4(cm)AC=4√3(cm)AH=2√3(cm){AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒{AB=4(cm)AC=43(cm)AH=23(cm)

b,b, Vì K là trung điểm AC nên AK=12AC=2√3(cm)AK=12AC=23(cm)

Ta có tanˆAKB=ABAK=42√3=2√33≈tan490tan⁡AKB^=ABAK=423=233≈tan⁡490

⇒ˆAKB≈490

27 tháng 10 2023

a: Xét ΔABH vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BA\cdot3,6=6^2=36\)

=>BA=10(cm)

AD+DB=BA

=>AD+3,6=10

=>AD=6,4(cm)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xét ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

=>\(HD\cdot10=6\cdot8=48\)

=>HD=4,8(cm)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE và ΔACB có

AD/AC=AE/AB

\(\widehat{DAE}\) chung

Do đó: ΔADE đồng dạng với ΔACB

22 tháng 6 2021

Câu a mình làm chứng minh tương tự nên hơi tắt đó nha, thật ra làm vẫn Ok nhưng mà đi thi học kì hay cấp 3 thì phải chứng minh hẳn 2 cái ra đó nhéundefined

22 tháng 6 2021

a) Xét tam giác ABH vuông tại H có HD là đường cao

=> AD.AB = AH2 ( Hệ thức lượng) (1)

Xét tam giác ACH vuông tại H có HE là đường cao

=> AE.AC = AH2 ( Hệ thức lượng) (2)

(1)(2) => AD.AB = AE.AC

b) Có AD.AB = AE.AC

=> \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét \(\Delta ADE\) và \(\Delta ACB\) có: 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

+ Chung góc A

=> \(\Delta ADE\) \(\sim\) \(\Delta ACB\)  (c-g-c)

=> \(\widehat{AED}=\widehat{ABC}\) (2 góc tương ứng)

31 tháng 10 2021

 b: Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(1\right)\)

Xét ΔABH vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(2\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(3\right)\)

Từ (1), (2) và (3) suy ra \(HB\cdot HC=AD\cdot AB=AE\cdot AC\)