Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ DE⊥CADE⊥CA. F là trung điểm của CD.
ta có FE là đường trung tuyến ứng với cạnh huyền của tam giác vuông CDE, nên
FE=CF=FD=BC=CD2FE=CF=FD=BC=CD2
do đó tam giác CFE cân.
đồng thời :180o−BCAˆ=FCEˆ⇒FCEˆ=60o180o−BCA^=FCE^⇒FCE^=60o
nên tam giác CFE đều. => CF=FE=CE
xét tam giác BFE và DCE có:
CE=FEFCEˆ=CFEˆ=60oBF=CD(BC=CF=FD)CE=FEFCE^=CFE^=60oBF=CD(BC=CF=FD)
do đó tam giác BFE = tam giác DCE (c-g-c)
FBEˆ=CDEˆ=900−600=300FBE^=CDE^=900−600=300
=> tam giác BED cân tại E, nên
BE=ED (1)
tam giác ABC : ABCˆ+ACBˆ+BACˆ=180o⇒CABˆ=1800−(ABCˆ+ACBˆ)=1800−1650=150ABC^+ACB^+BAC^=180o⇒CAB^=1800−(ABC^+ACB^)=1800−1650=150
đồng thời:
EBAˆ+FBEˆ=CBAˆ=450⇒EBAˆ=450−300=150EBA^+FBE^=CBA^=450⇒EBA^=450−300=150
nên EBAˆ=CABˆ=150EBA^=CAB^=150
do đó tam giác BEA cân tại E.
=> BE=AE (2)
từ (1) và (2) => ED=AE.
=> tam giác ADE cân tại E.
đồng thời tam giác ADE có DEAˆ=90oDEA^=90o
nên tam giác ADE là tam giác cân vuông.
⇒EDAˆ=DAEˆ=9002=45o⇒EDA^=DAE^=9002=45o
ta lại có: BDAˆ=CDEˆ+EDAˆ=30o+45o=75o
Câu hỏi của HÀ nhi HAongf - Toán lớp 7 - Học toán với OnlineMath
Tham khảo
Trong sách nâng cao và các chuyên đề 7 tập 1 đó bạn bài 7sáu trang 30
Hình tự vẽ đi
1) a) Theo đầu bài ta có: gACD = 60 mà gDEC = 90 => gEDC = 30 (1)
=> CD = 2CE
mà CD = 2BC => CE = BC => BDE là tam giác cân có gACB =120 => gBEC = 30 (2)
từ 1 2 =>.................................
b) từ ý a => BED là tam giác vuông cân => gADE = 45
=> ADB = 75
Trả lời:
Gọi F là trung điểm của CD
Có FE là đường trung tuyến ứng với cạnh huyền của tam giác vuông CDE
⇒FE=CF=FD=BC=CD/2
⇒ ΔCFE cân
Mà 180 độ−∠BCA=∠FCE
⇒∠FCE=60 độ
⇒ΔCFE đều
=> CF=FE=CE
Xét tam giác BFE và DCE có:
CE=FE
∠FCE=∠CFE=60 độ
BF=CD(BC=CF=FD)
⇒ Δ BFE = Δ DCE (c-g-c)
∠FBE=∠CDE=90 độ−60 độ=30 độ
=> ΔBED cân tại E
⇒BE=ED (1)
Xét Δ ABC có:
∠ABC+∠ACB+∠BAC=180 độ
⇒∠CAB=180 độ −(∠ABC+∠ACB)=180−165=15 độ
Mà ∠EBA+∠FBE=∠CBA=45 độ
⇒∠EBA=45−30=15 độ
⇒ ∠EBA=∠CAB=15 độ
⇒ ΔBEA cân tại E
=> BE=AE (2)
từ (1) và (2) => ED=AE.
=> ΔADE cân tại E
Đồng thời tam giác ADE có ∠DEA=90 độ
⇒ ΔADE là tam giác cân vuông
⇒∠EDA=∠DAE=90/2=45 độ
Mà ∠BDA=∠CDE+∠EDA=30+45=75 độ
~Học tốt~
ta có góc ACD= ABC+BAC=45 độ+15 độ=60 độ, vì thế trong tam giác vuông CDE có góc CDE=30độ
gọi I là trung điểm của CD thì IE= IC(điều này bạn tự chứng minh). tam giác ICE là tam giác đều nên CI = CE, suy ra CE =CB, do đó tam giác BEC cân tại C
khi đó góc CBE=góc CDE =30 độ . suy ra tam giác BED cân tại E. suy ra EB=ED(đpcm)
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
b)tính góc ADB
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
b)tính góc ADB
b)tính góc ADB
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
b)tính góc ADB
A B C E D 1 2 1 2 3
a) xét \(\Delta ABE\)và \(\Delta DCE\)ta có:
AE=ED(gt)
BE=EC(E là trug điểm của BC)
\(\widehat{E1}=\widehat{E2}\)(đối đỉnh)
=> \(\Delta ABE\)= \(\Delta DCE\)(c.g.c)
b) từ câu a => \(\widehat{B1}=\widehat{C2}\)(cặp góc tương ứng)
mà hai góc đó ở vị trí so le trong => AB//DC (bn viết sai đề DE)
c) xét \(\Delta ABE\)và \(\Delta ACE\)ta có:
AE là cạnh chung
AB=AC(gt)
BE=EC(E là trug điểm của BC)
=> \(\Delta ABE\)=\(\Delta ACE\)(c.c.c)
=> \(\widehat{E1}=\widehat{E3}\)(cặp góc t/ứng)
mà \(\widehat{E1}+\widehat{E3}=180^o\Rightarrow2\widehat{E1}=180^o\Rightarrow\widehat{E1}=90^o\)
=> AE vuông góc với BC (đpcm)
p/s: tớ làm 1 bài thui nha :)) dài quá
Để tui bài 2!
a) Xét tam giác AKB và tam giác AKC có:
\(AB=AC\) (gt)
\(BK=CK\) (do K là trung điểm BC)
\(AK\) (cạnh chung)
Do đó \(\Delta AKB=\Delta AKC\) (1)
b) \(\Delta AKB=\Delta AKC\Rightarrow\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) (Kề bù)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{\widehat{AKB}}{1}=\frac{\widehat{AKC}}{1}=\frac{\widehat{ABK}+\widehat{AKC}}{1+1}=\frac{180^o}{2}=90^o\)
Suy ra AK vuông góc với BC (2)
c)\(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}=45^o\) (Do \(\widehat{KAB} +\widehat{KAB}=90^o\) và \(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}\))
Mà \(\widehat{AKC}=90^o\) (CMT câu b)
Suy ra \(\widehat{KCA}=180^o-\widehat{KAC}-\widehat{AKC}=180^o-45^o-90^o=45^o\)
Mà \(\widehat{KCA}+\widehat{ACE}=90^o\) (gt,khi vẽ đường vuông góc BC cắt AB tại E)
Suy ra \(\widehat{ACE}=90^o-\widehat{KCA}=90^o-45^o=45^o\)
Hay \(\widehat{KCA}=\widehat{ACE}=45^o\).Mà hai góc này ở vị trí so le trong,nên: \(EC//AK\) (3)
Từ (1),(2) và (3) ta có đpcm.