Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của HÀ nhi HAongf - Toán lớp 7 - Học toán với OnlineMath
Tham khảo
Trong sách nâng cao và các chuyên đề 7 tập 1 đó bạn bài 7sáu trang 30
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
b)tính góc ADB
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
b)tính góc ADB
b)tính góc ADB
Cho tam giác ABC , có góc B = 45 độ , góc A=15 độ , , trên tia đối CB, lấy D sao cho CD=2BC, kẻ DE vuông góc với AC , chứng minh rằng :
a)EB=ED
b)tính góc ADB
Câu hỏi của HÀ nhi HAongf - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé.
vẽ DE⊥CADE⊥CA. F là trung điểm của CD.
ta có FE là đường trung tuyến ứng với cạnh huyền của tam giác vuông CDE, nên
FE=CF=FD=BC=CD2FE=CF=FD=BC=CD2
do đó tam giác CFE cân.
đồng thời :180o−BCAˆ=FCEˆ⇒FCEˆ=60o180o−BCA^=FCE^⇒FCE^=60o
nên tam giác CFE đều. => CF=FE=CE
xét tam giác BFE và DCE có:
CE=FEFCEˆ=CFEˆ=60oBF=CD(BC=CF=FD)CE=FEFCE^=CFE^=60oBF=CD(BC=CF=FD)
do đó tam giác BFE = tam giác DCE (c-g-c)
FBEˆ=CDEˆ=900−600=300FBE^=CDE^=900−600=300
=> tam giác BED cân tại E, nên
BE=ED (1)
tam giác ABC : ABCˆ+ACBˆ+BACˆ=180o⇒CABˆ=1800−(ABCˆ+ACBˆ)=1800−1650=150ABC^+ACB^+BAC^=180o⇒CAB^=1800−(ABC^+ACB^)=1800−1650=150
đồng thời:
EBAˆ+FBEˆ=CBAˆ=450⇒EBAˆ=450−300=150EBA^+FBE^=CBA^=450⇒EBA^=450−300=150
nên EBAˆ=CABˆ=150EBA^=CAB^=150
do đó tam giác BEA cân tại E.
=> BE=AE (2)
từ (1) và (2) => ED=AE.
=> tam giác ADE cân tại E.
đồng thời tam giác ADE có DEAˆ=90oDEA^=90o
nên tam giác ADE là tam giác cân vuông.
⇒EDAˆ=DAEˆ=9002=45o⇒EDA^=DAE^=9002=45o
ta lại có: BDAˆ=CDEˆ+EDAˆ=30o+45o=75o
Hình tự vẽ đi
1) a) Theo đầu bài ta có: gACD = 60 mà gDEC = 90 => gEDC = 30 (1)
=> CD = 2CE
mà CD = 2BC => CE = BC => BDE là tam giác cân có gACB =120 => gBEC = 30 (2)
từ 1 2 =>.................................
b) từ ý a => BED là tam giác vuông cân => gADE = 45
=> ADB = 75
Trả lời:
Gọi F là trung điểm của CD
Có FE là đường trung tuyến ứng với cạnh huyền của tam giác vuông CDE
⇒FE=CF=FD=BC=CD/2
⇒ ΔCFE cân
Mà 180 độ−∠BCA=∠FCE
⇒∠FCE=60 độ
⇒ΔCFE đều
=> CF=FE=CE
Xét tam giác BFE và DCE có:
CE=FE
∠FCE=∠CFE=60 độ
BF=CD(BC=CF=FD)
⇒ Δ BFE = Δ DCE (c-g-c)
∠FBE=∠CDE=90 độ−60 độ=30 độ
=> ΔBED cân tại E
⇒BE=ED (1)
Xét Δ ABC có:
∠ABC+∠ACB+∠BAC=180 độ
⇒∠CAB=180 độ −(∠ABC+∠ACB)=180−165=15 độ
Mà ∠EBA+∠FBE=∠CBA=45 độ
⇒∠EBA=45−30=15 độ
⇒ ∠EBA=∠CAB=15 độ
⇒ ΔBEA cân tại E
=> BE=AE (2)
từ (1) và (2) => ED=AE.
=> ΔADE cân tại E
Đồng thời tam giác ADE có ∠DEA=90 độ
⇒ ΔADE là tam giác cân vuông
⇒∠EDA=∠DAE=90/2=45 độ
Mà ∠BDA=∠CDE+∠EDA=30+45=75 độ
~Học tốt~
ta có góc ACD= ABC+BAC=45 độ+15 độ=60 độ, vì thế trong tam giác vuông CDE có góc CDE=30độ
gọi I là trung điểm của CD thì IE= IC(điều này bạn tự chứng minh). tam giác ICE là tam giác đều nên CI = CE, suy ra CE =CB, do đó tam giác BEC cân tại C
khi đó góc CBE=góc CDE =30 độ . suy ra tam giác BED cân tại E. suy ra EB=ED(đpcm)