Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn tự vẽ hình, bài này đơn giản: vì AD//ME nên góc E = góc A2 (đồng vị)
và góc F2 = góc A1 (đồng vị)
mà góc A1 = góc A2 (T/c phân giác) nên E = F2 , mặt khác góc F1 = góc F2 (đối đỉnh)
nên suy ra góc E = góc F1 hay là góc AFE = AEF (điều phải chứng minh)
a, Ta có:MN\(//\)AB
\(\Rightarrow\)\(\widehat{ABM}=\widehat{BMN}\left(slt\right)\) (1)
mà Bx là tia phân giác của \(\widehat{ABC}\)\(\Rightarrow\)\(\widehat{ABM}=\widehat{xBC}\)
Kết hợp với (1) ta được \(\widehat{BNM}=\widehat{xBC}\)(đfcm)
b,Ta có:
MN\(//\)AB
\(\Rightarrow\widehat{ABC}=\widehat{MNC}\left(đv\right)\) (2)
Ta lại có: Bx là tia phân giác của \(\widehat{ABC}\)mà Bx\(//\)Ny
Kết hợp với (2) ta được Ny là tia phân giác của\(\widehat{MNC}\)
Vậy..............
a) Xét tam giác vuông AHB và tam giác vuông AHC có:
Cạnh AH chung
HB = HC
\(\Rightarrow\Delta AHB=\Delta AHC\) (Hai cạnh góc vuông)
b) Do HK // AB nên \(\widehat{AHK}=\widehat{BAH}\) (Hai góc so le trong)
Lại có \(\widehat{BAH}=\widehat{CAH}\)
\(\Rightarrow\widehat{KAH}=\widehat{KHA}\)
Vậy thì \(\widehat{KHC}=\widehat{KCH}\) (Cùng phụ với hai góc trên)
\(\Rightarrow\) tam giác KHC cân tại K.
c) Ta có KA = KH = KC nên K là trung điểm AC.
Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.
Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)
Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)
d) Ta có \(2\left(AH+BK\right)=2\left(3HG+3GK\right)=6\left(HG+GK\right)\)
Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK
Vậy nên \(6\left(HG+GK\right)>6.HK=3.2HK=3AC\)
Tóm lại: \(2\left(AH+BK\right)>3AC\)
Bài giải :
a) Xét tam giác vuông AHB và tam giác vuông AHC có:
Cạnh AH chung
HB = HC
⇒ΔAHB=ΔAHC (Hai cạnh góc vuông)
b) Do HK // AB nên ^AHK=^BAH (Hai góc so le trong)
Lại có ^BAH=^CAH
⇒^KAH=^KHA
Vậy thì ^KHC=^KCH (Cùng phụ với hai góc trên)
⇒ tam giác KHC cân tại K.
c) Ta có KA = KH = KC nên K là trung điểm AC.
Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.
Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)
Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)
d) Ta có 2(AH+BK)=2(3HG+3GK)=6(HG+GK)
Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK
Vậy nên 6(HG+GK)>6.HK=3.2HK=3AC
Tóm lại: 2(AH+BK)>3AC
A B C E D Kí hiệu bằng nhau mà đỏ có nghĩa là không có trong GT ,điều đó có được sau khi chứng minh nhé bạn. Khi viết vào vở thì kí hiệu 1 màu mực thôi
a) Ta có: CE // AD:
=> ACE^ = BAD^ (đồng vị) (1)
=> ACE^ = DAC^ (sole trong) (2)
b) Ta có: BAD^ = DAC^ (3)
Từ (1) , (2) , (3) => AEC^ = ACE^