K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

a, Ta có:MN\(//\)AB

\(\Rightarrow\)\(\widehat{ABM}=\widehat{BMN}\left(slt\right)\)  (1)

mà Bx là tia phân giác của \(\widehat{ABC}\)\(\Rightarrow\)\(\widehat{ABM}=\widehat{xBC}\)

Kết hợp với (1) ta được \(\widehat{BNM}=\widehat{xBC}\)(đfcm)

b,Ta có:

MN\(//\)AB

\(\Rightarrow\widehat{ABC}=\widehat{MNC}\left(đv\right)\) (2)

Ta lại có: Bx là tia phân giác của \(\widehat{ABC}\)mà Bx\(//\)Ny

Kết hợp với (2) ta được Ny là tia phân giác của\(\widehat{MNC}\)

Vậy..............

6 tháng 12 2016

Ta có hình vẽ:

A B C M E F N x y

Câu d mình quên kí hiệu vuông góc rồi, bạn tự bổ sung nhé

a/ Xét tam giác AMB và tam giác AMC có:

AB = AC (GT)

BM = MC (GT)

AM : cạnh chung

=> tam giác AMB = tam giác AMC (c.c.c)

b/ Xét tam giác AEM và tam giác AFM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

AM : cạnh chung

\(\widehat{EAM}\)=\(\widehat{FAM}\) ( vì tam giác AMB = tam giác AMC)

Vậy tam giác AEM = tam giác AFM (g.c.g)

=> AE = AF (2 cạnh tương ứng)

c/ Xét tam giác EBM và tam giác FCM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

BM = MC (GT)

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)

Vậy tam giác EBM = tam giác FCM

(theo trường hợp cạnh huyền góc nhọn)

=> BE = FM (2 cạnh tương ứng) (1)

Ta có: EM: cạnh chung (2)

Ta có: 2 tam giác AEM và tam giác AFM đối xứng qua cạnh chung AM và có: \(\widehat{E}\)=\(\widehat{F}\)=900

=> \(\widehat{EMF}\) = 900 = \(\widehat{BEM}\) (3)

Từ (1),(2),(3) => tam giác BEM = tam giác EFM

=> \(\widehat{FEM}\)=\(\widehat{EMB}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> EF // BC

d/ Xét tam giác ABN và tam giác ACN có:

AB = AC (GT)

\(\widehat{BAN}\)=\(\widehat{CAN}\) (vì tam giác AMB = tam giác AMC)

AN: chung

=> tam giác ABN = tam giác ACN (c.g.c)

BN = CN ( 2 cạnh tương ứng)

Xét tam giác BMN và tam giác CMN có:

MN: chung

BM = MC (GT)

BN = CN (đã chứng minh)

=> tam giác BMN = tam giác CMN (c.c.c)

-Ta có: tam giác ABM = tam giác ACM (câu a)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)

=> góc AMB = góc AMC = 900

-Ta có: tam giác BMN = tam giác CMN (đã chứng minh)

=> \(\widehat{BMN}\)=\(\widehat{CMN}\) (2 góc tương ứng)

\(\widehat{BMN}\)+\(\widehat{CMN}\)=1800 (kề bù)

=> góc BMN = góc CMN = 900

Ta có: \(\widehat{AMB}\)+\(\widehat{BMN}\)=900+900 = 1800

hay \(\widehat{AMC}\)+\(\widehat{CMN}\)=900+900 = 1800

hay A,M,N thẳng hàng

7 tháng 12 2016

cảm ơn bạn nhiều

 

24 tháng 4 2015

a) vì BA // DE => góc BAD = ADE ( so le trong )

mà BAD=CAD (gt) => DAC = ADE 

=> tam giác EAD cân tại E 

b) BA //DE => BK//DE 

    KE//BC =>KE//BD 

=> KEDB là hình bình hành 

=>BK = DE ( 2 cạnh đối ) 

mà DE = AE ( t/g AED cân )

=> BK=AE 

 

ABI=HBC( 2 góc đồng vị ,AI // BH )

mà ABH =HBC ( BH là tia phân giác của ABC )

=> ABI=ABH

mà AHB =BAI (2 góc so le trong,AI //BH )

=> AIB = BAI

=> tam giác BAI cân tại B

mà BK là tia phân giác của ABI của tam giác BAI cân tại B

=> BK là đường cao của tam giác BAI 

=> BK _I_AI

11 tháng 10 2018

cai bai nay

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

4 tháng 2 2020

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

4 tháng 2 2020

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b, 

16 tháng 8 2016

bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha

Bài 1:

a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)

=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)

b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD

c) xét tam giác AEF  và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)

=> tam giác AEF  = tam giác DEC ( trường hợp g.c.g ) => AE = DC     (1)

mặt khác, AB = BD ( c/m câu b)      (2)      => tam giác ABD cân tại B => góc BDA = góc B :2     (3)

từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2     (4)

từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC

Bài 2:

a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD =  tam giác HBD => AD = DH ( cặp cạnh tương ứng)

b) do AD = DH ( c/m câu a)           (1)

xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên)    (2)

từ (1) và (2) => AD < DC

c) xét tam giác ADK  và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)

=> tam giác ADK  = tam giác HDC ( trường hợp g.c.g ) => AK = HC     (3)

mặt khác, AB = BH ( do tam giác ABD =  tam giác HBD)      (4)      

từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B 

Xong rồi nha :)

16 tháng 9 2016

chịu 

thông cảm nhé

a: \(\widehat{C}=90^0-30^0=60^0\)

c: Xét ΔCAD và ΔCMD có 
CA=CM

\(\widehat{ACD}=\widehat{MCD}\)

CD chung

Do đó: ΔCAD=ΔCMD