Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm thì dài lắm nên mik nói qua thôi
Bài 1
a) Vì AB=AC => tam giác ABC cân tại A
=>AH là đường trung tuyến ứng với BC mà trong tam giác cân đường trung tuyến cũng chính là đường phân giác và đường trung trực nên =>đpcm
b)Vì HK=HA ;BH=CH và AH vuông góc với BC nên ABKC là hình thoi(tứ giác có 2 đường chéo cắt nhau ở trung điểm mỗi đường và vuông góc với nhau)
=>AB song song với CK (tính chất 2 cạnh đối của hình thoi)
a, ta có:
+/ \(\Delta\)ABC cân tại A=> \(\widehat{ABC}=\widehat{ACB}\)và AB=AC
+/AB=AC(gt)
AD+BD=AE+CE
Mà AD=AE(gt)
SUY RA:BD=CE
Xét \(\Delta BCD\)và \(\Delta CEB\)có
BC chung
\(\widehat{ABC}=\widehat{ACB}\)(cmt)
BD=CE(cmt)
Suy ra: \(\Delta BCD\)= \(\Delta CEB\)
=>BE=CD(đpcm)
a) \(\Delta ABM\)và \(\Delta ACM\)
+ AB = AC(gt)
+ BM = CM(gt)
+ Chung AM
Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)
=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABD\)và \(\Delta ACE\)
+ \(\widehat{ABD}=\widehat{ACE}\)
+ AB = AC (gt)
+BD = EC(gt)
\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)
Xét \(\Delta AHB\)và \(\Delta AKC\)
+ AH = AK (gt)
+ AB = AC (gt)
+ \(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)
\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)
=> HB=CK ( hai cạnh tương ứng)
d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng
Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)
\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)
Xét \(\Delta BAO=\Delta CAO\)
+ AB = CA (gt)
+ Chung AO
+ \(\widehat{BAO}=\widehat{CAO}\)(cmt)
\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)
=>OB = OC (hai cạnh tương ứng)
Ta có hình vẽ:
A B C K D E
Xét Δ ABE và Δ ACD có:
AB = AC (gt)
A là góc chung
AE = AD (gt)
Do đó, Δ ABE = Δ ACD (c.g.c)
=> ABE = ACD (2 góc tương ứng)
và AEB = ADC (2 góc tương ứng)
Mà AEB + BEC = 180o (kề bù)
ADC + CDB = 180o (kề bù)
nên BEC = CDB
Có: AB = AC (gt)
AD = AE (gt)
=> AB - AD = AC - AE
=> BD = CE
Xét Δ KBD và Δ KCE có:
KBD = KCE (cmt)
BD = CE (cmt)
KDB = KEC (cmt)
Do đó, Δ KBD = Δ KCE (đpcm)
Ta có hình vẽ:
A B C D E K Xét tam giác ABE và tam giác ACD có:
A: góc chung
AB = AC (GT)
AD = AE (GT)
=> tam giác ABE = tam giác ACD (c.g.c)
=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng) (1)
=> \(\widehat{ADC}\)=\(\widehat{AEB}\) (2 góc tương ứng) (*)
Mà \(\widehat{ADC}\)+\(\widehat{CDB}\)=1800 (kề bù) (**)
và \(\widehat{AEB}\)+\(\widehat{BEC}\)=1800 (kề bù) (***)
Từ (*),(**),(***) => \(\widehat{KDB}\)=\(\widehat{KEC}\) (2)
Ta có: AB = AC; AD = AE => DB=EC (3)
Từ (1);(2);(3) => tam giác KBD = tam giác KCE (đpcm)
Ta có hình vẽ:
A B C D E M K a/ Xét tam giác DBC và tam giác EBC có:
BC: cạnh chung
\(\widehat{B}\)=\(\widehat{C}\)(vì tam giác ABC cân có AB = AC)
BD = CE (GT)
=> tam giác DBC = tam giác EBC (c.g.c)
=> BE = CD (2 cạnh tương ứng)
b/ Ta có: \(\widehat{BDC}\)=\(\widehat{CEB}\) (vì tam giác DBC = tam giác EBC) (1)
Ta có: tam giác ABC cân => \(\widehat{B}\)=\(\widehat{C}\)
Mà \(\widehat{EBC}\)=\(\widehat{DCB}\) (vì tam giác DBC = tam giác EBC)
nên \(\widehat{DBK}\)=\(\widehat{ECK}\) (2)
Ta có: BD = CE (GT) (3)
Từ (1),(2),(3) => tam giác KBD = tam giác KCE (g.c.g)
c/ Xét tam giác ABK và tam giác ACK có:
AB = AC (GT)
AK: cạnh chung
Ta có: KD = KE (vì tam giác KBD = tam giác KCE)
Mà BE = CD (câu a)
nên BK = CK
Vậy tam giác ABK = tam giác ACK (c.c.c)
=> \(\widehat{BAK}\)=\(\widehat{CAK}\) (2 góc tương ứng)
=> AK là phân giác \(\widehat{DAE}\) (đpcm)
d/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
=> AM cũng là phân giác góc \(\widehat{DAE}\)
Ta có: AK và AM đều là phân giác của \(\widehat{DAE}\)
=> AM trùng AK
hay A,K,M thẳng hàng.
: