K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016

Ta có hình vẽ:

A B C K D E

Xét Δ ABE và Δ ACD có:

AB = AC (gt)

A là góc chung

AE = AD (gt)

Do đó, Δ ABE = Δ ACD (c.g.c)

=> ABE = ACD (2 góc tương ứng)

và AEB = ADC (2 góc tương ứng)

Mà AEB + BEC = 180o (kề bù)

ADC + CDB = 180o (kề bù)

nên BEC = CDB

Có: AB = AC (gt)

AD = AE (gt)

=> AB - AD = AC - AE

=> BD = CE

Xét Δ KBD và Δ KCE có:

KBD = KCE (cmt)

BD = CE (cmt)

KDB = KEC (cmt)

Do đó, Δ KBD = Δ KCE (đpcm)

26 tháng 11 2016

Ta có hình vẽ:

A B C D E K Xét tam giác ABE và tam giác ACD có:

A: góc chung

AB = AC (GT)

AD = AE (GT)

=> tam giác ABE = tam giác ACD (c.g.c)

=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng) (1)

=> \(\widehat{ADC}\)=\(\widehat{AEB}\) (2 góc tương ứng) (*)

\(\widehat{ADC}\)+\(\widehat{CDB}\)=1800 (kề bù) (**)

\(\widehat{AEB}\)+\(\widehat{BEC}\)=1800 (kề bù) (***)

Từ (*),(**),(***) => \(\widehat{KDB}\)=\(\widehat{KEC}\) (2)

Ta có: AB = AC; AD = AE => DB=EC (3)

Từ (1);(2);(3) => tam giác KBD = tam giác KCE (đpcm)

16 tháng 10 2016

điểm M từ đâu ra?

https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A,+tr%C3%AAn+c%E1%BA%A1nh+Ab+l%E1%BA%A5y+%C4%91i%E1%BB%83m+d+Tren+Ac+l%E1%BA%A5y+di%E1%BB%83m+E+sao+cho+AD=AE.+G%E1%BB%8Di+M+l%C3%A0+giao+%C4%91i%E1%BB%83m+BE+v%C3%A0+CD+CMR+:+a,+BE=CD+b,+tam+gi%C3%A1c+BMD+=+TAM+GI%C3%81C+CME+C,+AM+l%C3%A0+ph%C3%A2n+gi%C3%A1c+BAC+gi%E1%BA%A3i+gi%C3%BAp+mik+v%E1%BB%9Bi+...+k%E1%BA%BB+giao+%C4%91i%E1%BB%83m+nh%C6%B0+th%E1%BA%BF+n%C3%A0o+v%E1%BA%ADy+?&id=364664

13 tháng 6 2019

A B C D E K

Cm: a) Xét t/giác ADC và t/giác AEB

có:  AC = AB (gt)

 góc A : chung

  AD = AE (gt)

=> t/giác ADC = t/giác AEB (c.g.c)

=> DC = BE (hai cạnh tương ứng)

b) Ta có: AD + DB = AB

AE + EC = AC

Mà AB = AC (gt); AD = AE (gt)

=> DB = EC

Ta lại có:

góc BDC là góc ngoài của t/giác ADC

=> góc BDC = góc A + góc ACD 

góc BEC là góc ngoài của t/giác ABE

=> góc BEC = góc A + góc ABE

Mà góc ACD = góc ABE

=> góc BDC = góc BEC hay góc BDK = góc KEC

Xét t/giác KBD và t/giá KCE

có góc DBK = góc ECK (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  góc BDK = góc EKC (cmt)

=> t/giác KBD = t/giác KCE

c) Xét t/giác ABK và t/giác ACK

có AB = AC (gt)

 AK : chung

 BK = CK (vì t/giác KBD = t/giác KCE)

=> t/giác ABK = t/giác ACK (c.c.c)

=> góc BAK = góc CAK (hai góc tương ứng)

=> AK là tia p/giác của góc A

d) Ta có: AD = AE (gt)

=> A thuộc đường trung trực của DE 

DK = KE (vì t/giác KBD = t/giác KCE)

=> K thuộc đường trung trực của DE

DO A khác K => AK là đường trung trực của DE

e) Ta có: AD = AE

=> t/giác ADE cân tại A

=> góc ADE = góc AED = \(\frac{180^0-\widehat{A}}{2}\) (1)

Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = \(\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => góc ADE = góc B

Mà góc ADE và góc B ở vị trí đồng vị

=> AE // BC (Đpcm)

30 tháng 11 2016

Ta có hình vẽ:

A B C D E M K a/ Xét tam giác DBC và tam giác EBC có:

BC: cạnh chung

\(\widehat{B}\)=\(\widehat{C}\)(vì tam giác ABC cân có AB = AC)

BD = CE (GT)

=> tam giác DBC = tam giác EBC (c.g.c)

=> BE = CD (2 cạnh tương ứng)

b/ Ta có: \(\widehat{BDC}\)=\(\widehat{CEB}\) (vì tam giác DBC = tam giác EBC) (1)

Ta có: tam giác ABC cân => \(\widehat{B}\)=\(\widehat{C}\)

\(\widehat{EBC}\)=\(\widehat{DCB}\) (vì tam giác DBC = tam giác EBC)

nên \(\widehat{DBK}\)=\(\widehat{ECK}\) (2)

Ta có: BD = CE (GT) (3)

Từ (1),(2),(3) => tam giác KBD = tam giác KCE (g.c.g)

c/ Xét tam giác ABK và tam giác ACK có:

AB = AC (GT)

AK: cạnh chung

Ta có: KD = KE (vì tam giác KBD = tam giác KCE)

Mà BE = CD (câu a)

nên BK = CK

Vậy tam giác ABK = tam giác ACK (c.c.c)

=> \(\widehat{BAK}\)=\(\widehat{CAK}\) (2 góc tương ứng)

=> AK là phân giác \(\widehat{DAE}\) (đpcm)

d/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

=> AM cũng là phân giác góc \(\widehat{DAE}\)

Ta có: AK và AM đều là phân giác của \(\widehat{DAE}\)

=> AM trùng AK

hay A,K,M thẳng hàng.

3 tháng 12 2016

 

 

 

 

hiu :

30 tháng 11 2016

chứng minh cáy này dài lắm...

viết xog thì ốm

30 tháng 11 2016

@Nguyễn Quốc Phương mk chỉ cần phần c,d thôi 

25 tháng 4 2018

a) 

Xét  tam giác ADC  và tam giác AEB  có :

AD = AE (GT)

Góc A chung

AC = AB ( vì tam giác ABC cân )

từ 3 điều trên => tam giác ADC = tam giác  AEB  (c-g-c )

=> DC= BE ( cặp cạnh tương ứng )

b) vì tam giác ADC  = tan giác AEB ( câu a )

=> góc ABE = góc ACD ( cặp góc tương ứng )

ta có : tam giác ABC  cân => AB = AC   (1)

                                               và AD = AE (GT )  (2)

từ (1) và (2) => BD = CE 

Xét tam giác KBD  và tam giác KCE Có :

góc DKB = góc EKC ( 2 góc đối đỉnh )

BD = CE  ( chứng minh trên )

Góc DKB = góc EKC  ( đối đỉnh )

từ 3 điều trên => tam giác KBD  = tam giác  KCE ( g-c-g )

25 tháng 4 2018

bạn bit câu c, d ko