K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 8 2018
Vì AM là đường trung tuyến nên BM=MC=BC:2 =8:2=4 Vì AM là đường trung tuyến trong tam giac cân nên đồng thời là đường cao. Áp dụng định lí pi-ta-go vào tam giác vuông AMC tacos:
VT
0
LT
0
Gọi G là giao của 2 đường trung tuyến AM và BN.Vì ABC là tam giác cân nên
\(AM\perp BC\)
Theo định lý Pytago,xét tam giác vuông tại M :GMB
\(BG^2=GM^2+BM^2=3^2+4^2\)
\(\Rightarrow BG=5\)
Vì G là trọng tâm nên
\(BG=\frac{2}{3}BN\Rightarrow\frac{5}{\left(\frac{2}{3}\right)}=BN\Leftrightarrow BN=\frac{15}{2}\)
Cách khác:
Vì AM vuông góc BC nên
Xét tam giác ABM
\(ÂB^2=BM^2+AM^2\)
\(AB^2=4^2+9^2=97\)
Vậy \(AB=AC=\sqrt{97}\)
Ta có công thức tính độ dài đường trung tuyến
\(m_b=\sqrt{\frac{AB^2+BC^2}{2}-\frac{AC^2}{4}}=\sqrt{\frac{97+64}{2}-\frac{97}{4}}=\frac{15}{2}\)