Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là giao của 2 đường trung tuyến AM và BN.Vì ABC là tam giác cân nên
\(AM\perp BC\)
Theo định lý Pytago,xét tam giác vuông tại M :GMB
\(BG^2=GM^2+BM^2=3^2+4^2\)
\(\Rightarrow BG=5\)
Vì G là trọng tâm nên
\(BG=\frac{2}{3}BN\Rightarrow\frac{5}{\left(\frac{2}{3}\right)}=BN\Leftrightarrow BN=\frac{15}{2}\)
Cách khác:
Vì AM vuông góc BC nên
Xét tam giác ABM
\(ÂB^2=BM^2+AM^2\)
\(AB^2=4^2+9^2=97\)
Vậy \(AB=AC=\sqrt{97}\)
Ta có công thức tính độ dài đường trung tuyến
\(m_b=\sqrt{\frac{AB^2+BC^2}{2}-\frac{AC^2}{4}}=\sqrt{\frac{97+64}{2}-\frac{97}{4}}=\frac{15}{2}\)
Lời giải:
a) Sửa lại thành $\triangle ABM=\triangle ACM$
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$ (do $ABC$ là tam giác cân tại $A$)
$\widehat{ABM}=\widehat{ACM}$ (do $ABC$ là tam giác cân tại $A$)
$AM$ chung
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
b) Từ tam giác bằng nhau trên suy ra:
$\widehat{BAM}=\widehat{CAM}$ nên $AM$ là phân giác $\widehat{BAC}$