K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
5 tháng 11 2018
Câu hỏi của Hai Nguyen Lam - Toán lớp 9 - Học toán với OnlineMath Bạn tham khảo bài làm ở link này nhé!
Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, A] Đoạn thẳng q: Đoạn thẳng [B, H] Đoạn thẳng r: Đoạn thẳng [D, E] Đoạn thẳng s: Đoạn thẳng [H, E] Đoạn thẳng t: Đoạn thẳng [F, G] Đoạn thẳng a: Đoạn thẳng [F, K] Đoạn thẳng b: Đoạn thẳng [A, F] Đoạn thẳng c: Đoạn thẳng [K, C] Đoạn thẳng d: Đoạn thẳng [H, K] Đoạn thẳng e: Đoạn thẳng [H, D] Đoạn thẳng f_1: Đoạn thẳng [K, D] Đoạn thẳng g_1: Đoạn thẳng [I, J] B = (-0.92, 2.22) B = (-0.92, 2.22) B = (-0.92, 2.22) C = (7.22, 2.18) C = (7.22, 2.18) C = (7.22, 2.18) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm D: Điểm trên f Điểm D: Điểm trên f Điểm D: Điểm trên f Điểm F: Giao điểm đường của j, k Điểm F: Giao điểm đường của j, k Điểm F: Giao điểm đường của j, k Điểm E: Giao điểm đường của j, h Điểm E: Giao điểm đường của j, h Điểm E: Giao điểm đường của j, h Điểm H: Giao điểm đường của l, m Điểm H: Giao điểm đường của l, m Điểm H: Giao điểm đường của l, m Điểm K: Giao điểm đường của n, p Điểm K: Giao điểm đường của n, p Điểm K: Giao điểm đường của n, p Điểm I: Giao điểm đường của h, e Điểm I: Giao điểm đường của h, e Điểm I: Giao điểm đường của h, e Điểm J: Giao điểm đường của i, f_1 Điểm J: Giao điểm đường của i, f_1 Điểm J: Giao điểm đường của i, f_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1
a) Ta thấy \(\widehat{BDI}=\widehat{BCA}\left(=\widehat{IBD}\right)\), suy ra ID // AJ
Tương tự DJ // IA. Vậy tứ giác AIDJ là hình bình hành hay AJ song song và bằng ID.
Từ đó suy ra AJ cũng song song và bằng HI hay AHIJ là hình bình hành. Vậy thì HA // IJ (1)
Xét tam giác HDK có IJ là đường trung bình nên HK // IJ (2)
Từ (1) và (2) suy ra H, A, K thẳng hàng.
b) Ta thấy do AHIJ là hình bình hành nên IJ = AH. Lại có \(IJ=\frac{HK}{2}\Rightarrow HA=\frac{HK}{2}\)
Vậy A là trung điểm của HK.
c) Do AIDJ là hình bình hành nên trung điểm IJ cũng là trung điểm AD.
Vậy khi D thay đổi, M luôn là trung điểm AD. Nói cách khác, khi M thay đổi M sẽ di chuyển trên đường trung bình ứng với đáy BC của tam giác ABC.