K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

Bài 1

Do góc ABC=45 độ và APC=60 độ ta tính đựoc góc BAP =15 độ. 

Trên cạnh BC của tam giác ta lấy điểm Q mà QC= 1/3 BC rõ ràng BP=PQ=QC. Mặt khác bạn kẻ đường cao AH cho tam giác ABC thì rõ ràng góc AHC=90 trong khi góc APC=60 nên suy ra P nằm giữa B và H. 
Ta có tg APC là một nửa của 1 tg đều với góc P =60 độ suy ra góc PAH =30 độ . Vậy thì PH =1/2PQ. tg APQ có AH vừa là đg cao vừa là đg trung tuyến nên là tam giác cân, lại có góc P=60 độ nên nó là tam giác đều. suy ra AP=PQ=AQ =QC=PC 
Dễ dàng chứng minh đựoc tg ABC là tam giác cân => ACB=60 độ 

Nếu chậm tiêu thì nói rõ hơn là do tg APQ là tg đều nên AP=AQ=PQ=>góc AQP=60độ =>AQC=120 độ=>tg ABP và tgAQC = nhau (c.g.c) =>AB=AC 

Thử lại cộng 3 góc của tg ABC thấy:ABC+PAQ+QAC+ACB=45+60+15+45=180

12 tháng 8 2016

có j đó sai sai

27 tháng 11 2016

2 cm

 

15 tháng 12 2016

2 cm

20 tháng 7 2019

Giúp mik với :)

11 tháng 4 2020

tính AD:
xét tam giác ABC . dùng định lý cos trong tam giác ta có (BC^2= AB^2 + AC^2- 2AB*AC*cosA )
có AC=AB nên ta sẽ tìm được AB và AC = 2 chia căn( 2 - căn 3)
mặt khác ta có B+C+A=180 nên có ABD = 15độ
áp dụng định lý cos trong tam giác BDC có ( DC ^2 = BD^2+BC^2 - 2BD*BC*cos BDC
áp dụng tiếp với tam giác ABD có : AD^2 = AB^2 + BD^2-2AB*BD*cosABD
ta tính DC và AD có CD = căn(....) = BD-2
AD =căn (...)= ....

sau đó có AD +DC = AC --> BD =?, sau đó thay vào AD ta sẽ tìm được

13 tháng 8 2016

khỏi cần nhaq mn, mik bik lm r, hjhj haha

17 tháng 11 2018

vậy bây giờ chị có nhớ cách giải nữa không vậy ? Chị bày cho em với ạ.

 

a: Xét ΔIKE và ΔIML có

\(\widehat{IKE}=\widehat{IML}\)

\(\widehat{KIE}=\widehat{MIL}\)

Do đó: ΔIKE\(\sim\)ΔIML

b: Xét ΔMIL và ΔMKE có 

\(\widehat{IML}=\widehat{KME}\)

\(\widehat{ILM}=\widehat{KEM}\)

Do đó: ΔMIL\(\sim\)ΔMKE

Suy ra: MI/MK=ML/ME

hay \(MI\cdot ME=MK\cdot ML\)

12 tháng 7 2023

Mày nhìn cái chóa j

30 tháng 10 2016

1. ta có AD = BC (gt)

mà DH = BF (gt)

=> AH =FC

xét ▲AHE và ▲FCG, có:

AE = CG (gt)

góc A = góc C (gt)

AH = FC (cmt)

=>▲AHE = ▲FCG (c.g.c)

=>HE = FG (2 cạnh t/ứ)

cmtt : HG = EF

Vậy EFGH là hbh (đpcm)